
IS
TO

CK
PH

O
TO

16 BETTER SOFTWARE JULY/AUGUST 2010 www.StickyMinds.com

 www.StickyMinds.com JULY/AUGUST 2010 BETTER SOFTWARE 17

If you’ve struggled to find collaborative ways for your

team and customer to understand evolving product needs

while delivering value on a steady basis, you’re not alone.
Challenges include accurately estimating the work, readily defining conditions of sat-
isfaction (“doneness” criteria) for requirements, churning on requirements as you begin
development, being unable to deliver as promised because new requirements pop up in
the middle of development, inability to easily pull requirements into current development
work when there is excess capacity, or being unable to meet your delivery commitments.

A typical culprit is “chunky” requirements. They’re too big, they aren’t clearly pri-
oritized, or the team doesn’t understand them in sufficient detail to implement them ef-
ficiently.

We’ve used a variety of “splitting” techniques to ratchet up agile teams’ awareness of
the importance of working with requirements in the form of user stories. [1] Popular ap-
proaches include splitting by business process, database operations (e.g., create, read, up-
date, delete), data groups, low fidelity versus high fidelity, and so on. [2, 3, 4]

Some teams find it hard to apply story-splitting strategies consistently. Others focus
on the technical aspects of these strategies rather than base their work on a firm under-
standing of user needs. And still others neglect nonfunctional requirements, focusing only
on functional requirements.

If this sounds like your agile team, stay tuned. We want to share a better way.

Slicing User Story Options Based on Value
Our requirements-slicing technique starts from the assumption that the team and the

customer have a shared understanding of the product vision and goals, and they agree on
what constitutes value and how value will be measured. Our focus here is on a practical
way to pull the requirements out of those high-level needs so that the team and customer
can deliver working software in smaller chunks over time.

To do that, teams and business customers need to jointly explore requirements options,
identify the most important ones, and slice chunky stories into manageable pieces. The op-
timal slicing technique would be reusable in all problem domains, leverage the discipline of
requirements analysis, be quick to learn and efficient to use, engage product owners (a.k.a.
customers), put the “user” back into user stories, directly feed into acceptance tests, and
deepen the entire team’s knowledge of the requirements.

Based on our experience with the power of small, testable user stories and inspired by
the work of Chris Matts and Olav Maasen on real options and feature injection [5, 6],
Bill Wake and others on story splitting [1, 2, 3, 4], Jeff Sutherland and others on ready
requirements [7, 8, 9, 10], Dean Leffingwell on a lean backlog [11], and Mike Cohn on
minimizing team handoffs [12], we’ve defined a straightforward way to slice user stories.

What Is a Ready User Story?
Ready stories are small, well-understood, valuable user stories. Other names for user

stories in this state include right-sized, sliced, iteration-level, queued for development, and
analyzed stories.

A ready user story is highly valued by the product owner, needed for delivery in the
next release or iteration, and understood well enough by the delivery team to estimate,
plan, commit to, and deliver.

When Do You Make User Stories Ready?
You want to get user stories ready just before planning as part of work-ahead anal-

ysis or backlog grooming. You groom your backlog continuously so that items are ready
before estimating and planning—whether you use timeboxed iterations or a continuous-
flow mechanism such as kanban. The team needs to be ready, with enough requirements
knowledge to specify acceptance criteria, reliably estimate the work, and meet delivery
commitments. By conducting regularly scheduled, informal agile requirements workshops,
the team collaborates with the product owner to groom the backlog for changing require-
ments and prepare user stories for upcoming delivery cycles.

18 BETTER SOFTWARE JULY/AUGUST 2010 www.StickyMinds.com

Analyzing User Story Options: Expand-
Then-Contract

To get your user stories ready, our story-slicing technique
follows an overall pattern of expand-then-contract. For
each user story, in the expand phase, the product owner first
elaborates possible options. Then, in the contract phase, the
team and the product owner explore the options and quickly
narrow them based on their value; this takes a matter of min-
utes. The result is a small, concise, thinly sliced story ready for
development.

Let’s explore this pattern in more detail.
In the expand phase, you begin with a single chunky story

and explore the analysis options. Your analysis looks at six
elements of the user story:

•	 Who	 acts	 in	 the	 user role? What are the types and
states of that role?

•	 What	actions are needed to meet the user’s goal?
•	 What	 data objects are acted on? What are the types

and states of those data objects?
•	 What	business rules must be enforced for the actions

and data objects?
•	 What	 interfaces are needed? What are their types—

manual solutions, physical hardware devices, system-
to-system interfaces, or user interfaces?

•	 What	quality attributes constrain and control the sliced
user story?

In the contract phase, the product owner collaborates
with the team to select options using transparent, rational cri-
teria—for example, return on investment, market drivers or
events, or risk reduction. She uses prioritization techniques
such as a tailored ranking scheme, stakeholder value, voice of
the customer, and so on.

Throughout this expand-then-contract process, the team
and product owner together gain crucial knowledge. As
the product owner assigns a value to each option, she asks
the team to gauge the effort and risks for implementing it,
heightening her understanding of technical concerns and the
development process. As team members discuss the options,
they learn about the requirements. Team members question,
challenge, and clarify the product owner’s filtering criteria,
deepening their understanding of the business domain and the
requirements that will provide value.

Note that you will find this technique useful for product
requirements but not team or technical work, which some
teams represent as “technical” stories. And remember: As you
proceed through each expand phase, if you discover that any
of the six user story elements has no options, simply move to
the next element.

Slicing Stories by Analyzing Options: An
Example

Let’s iterate through the technique again, this time looking
at the six elements via a sample story.

You begin by selecting a high-value user story from your
backlog. The story might originate from, say, a high-level
feature or a minimal marketable feature (MMF). [13] Or, it
might have been decomposed from chunkier requirements—
what some teams call “epics.”

On agile teams, these stories are usually written in the fol-
lowing form:

As a [user role]
I need to [some behavior or action]
so that [business value]

Figure 1: The six slicing elements of a user story

 www.StickyMinds.com JULY/AUGUST 2010 BETTER SOFTWARE 19

Next, determine if the story is a candidate for slicing.
What makes a user story “too big”? That differs for each

team. Your team’s size and iteration or release length are fac-
tors. Some teams strive to size their stories so that they can
complete a single story in a few hours or a day. Other teams
have a longer time frame—two to three days at most.

Your goal is to attain a set of high-value, ready stories that
are about equal in size and are sufficiently analyzed so that
you can size, plan, and deliver them as promised.

Books and Beyond
Figure 1 shows the six elements of a user story.
In our sample, we’re building an application for a business

that sells products such as books, movies, music, and greeting
cards. You select the big, chunky story: “As a customer, I
want to buy a product so that I can enjoy using it.” Follow
along as we explore options and assign a value to each one.

Step 1: User Role Options: Types and
States

To analyze the user role, we explore options for the types
and states of the customer. The user role initiates the story
and has the goal of obtaining value. The name of the role is
based on the user’s intention or goal. In the user story, the cus-
tomer intends to buy; hence, we name the user role “buyer.”

Working with the product owner, we define the types of
buyers:

User Role Type Options
Individual Buyer
Corporate Buyer
Club Member Buyer
Employee Buyer

These types, along with all the domain terms, should be
defined in the product glossary to enable a shared under-
standing of the domain (also providing a stable basis for do-
main-specific modeling).

select for value
Now ask the product owner to prioritize the user-role type

options. Which one has the highest business value for the next
iteration? Our product owner wants to focus on income and
not slow down delivery with complex buyer types. She selects
Individual Buyer.

This is our first use of the expand-then-contract pattern—
but definitely not our last.

For the chosen user role type, next explore its possible
states or the lifecycle stages it undergoes.

User Role State Options (for Individual Buyer)
New
Existing
Anonymous (can buy without providing a name)
Archived

select for value
Now that we’ve expanded the states, it’s time to contract.

Again, our product owner needs to narrow her options to the
buyer state that will yield the highest immediate value. She
selects Individual, Anonymous Buyer.

Step 2: Action Options
To identify all the possible actions that satisfy the selected

user role’s desired goal, start with the verb in the user story
text: “I want to buy a product. . .”

Ask the product owner what typically happens (or, if the
action is new, what will potentially happen) and what deci-
sions must be made. For the individual, anonymous buyer, the
buy action options are as follows:

Buy Action Options
Verify product cost
Calculate tax amount
Calculate total purchase amount
Apply discount
Apply wrapping fee
Arrange for shipping
Secure payment
Adjust inventory
Generate receipt
Post payment to accounts receivable

We suggest writing each action option on a sticky note so
that the product owner can move them around. The order of
the options is not critical at this point.

select for value
The product owner surveys the action options and de-

termines the minimum options needed for the next delivery

"Your goal is to attain a set of high-value,

ready stories that are about equal in size and

are sufficiently analyzed so that you can size,

plan, and deliver them as promised."

cycle. Encourage her to defer actions that are less valuable,
occur infrequently, require data not yet built into databases,
or are complex and better left until later.

Be sure to analyze any interdependent options—those that
might need to be selected together. At the same time, look for
independent actions. For example, ask your product owner,
“Is it necessary to offer discounts in the next iteration or re-
lease, or can that wait?”

To guide the selection, consider the context of the action.
For example, is the buyer shopping at a brick-and-mortar
store or online? We learn that the immediate need is to sup-
port in-store purchases. Our product owner selects four op-
tions (checked):

Buy Action Options
	Verify product cost
 Calculate tax amount
	Calculate total purchase amount
 Apply discount
 Determine wrapping fee
 Arrange for shipping
	Secure payment
 Adjust inventory
	Generate receipt
 Post payment to accounts receivable

Step 3: Data Object Options: Types and
States

Next, we focus on data objects. Your product owner
should identify object options based on her prior selections of
user role and actions. In our example, the objects are Product,
Payment, and Receipt.

For each object option, identify types or variations. For
example, the Product object’s types include Book, CD, DVD,
and so on.

select for value
The team has analyzed the objects and expanded its un-

derstanding of the objects’ types. The product owner assesses
the business value of the options and determines valid combi-
nations. The product owner chooses the highest-value object
types (checked items in table 1):

There’s more. As you did with the user role, you need to
explore possible lifecycle states for the objects specific to our

20 BETTER SOFTWARE JULY/AUGUST 2010 www.StickyMinds.com

story. In our example, the Book object has two states: new
or used.

select for value
As before, the product owner now contracts the options.

Her selection is New Book.

Book State Options
	New
 Used

What We’ve Sliced So Far
We started with the user story: “As a customer, I want to

buy a product ...” We used the expand-then-contract pattern
to slice three elements: user role (types and states), actions,
and data objects (types and states). The story has been sliced:

“As an individual anonymous buyer, I want to buy a new
book ... paying with cash and receiving a cash receipt.”

The story includes four action options: verify product
price, calculate total purchase amount, secure payment, and
generate receipt.

At this point, you have partially sliced your story. Your
team might choose to defer analyzing the three additional
slicing options (business rules, interfaces, and quality attri-
butes) until development. But, in our experience, the addi-
tional minutes spent exploring these other options before you
commit to delivering a story can significantly help in creating
a ready story while expanding the team’s knowledge of the
product requirements. Let’s take a look.

Step 4: Business Rule Options
Business rules define constraints and conditions that must

be satisfied. As part of developing your story’s sliced, high-
value actions and objects, you need to elicit business rules
that must be enforced. Limiting business rule options to only
the prioritized user role, actions, and objects streamlines your
analysis work and ensures eliciting “fresh” rules.

select for value
The product owner again weighs the business value of

these options for the next iteration. She chooses the following
(checked):

Business Rule Options
	Payment currency must be specific to purchase location
 Cash payment denomination amount must not be

greater than …
	Payment change amount is calculated as …
 Receipt bar code is designed using …

Step 5: Interface Type Options
You can gain a high-level view of your story’s interfaces

by quickly drawing a context diagram of the user story or its
higher-level, minimal marketable feature.

Focus on the interface options that are relevant to the

Table 1

Product Type
Options
	Book

 CD

 DVD

 Gift card

 Greeting card

 Electronic
book reader

Payment Type
Options
	Cash

 Credit card

 PayPal

 Purchase
order

Receipt Type
Options
	Cash receipt

 Credit card
receipt

For more on the following topic go to
www.StickyMinds.com/bettersoftware.
n	 References

 www.StickyMinds.com JULY/AUGUST 2010 BETTER SOFTWARE 21

high-priority user role (type and state), actions, and objects
(type and state). Then, determine the appropriate type of in-
terface (manual, hardware, system to system, or user).

Our sample user story requires interfaces for the book in-
formation (to verify the cost), the cash payment (to secure the
payment), and the generated cash receipt.

select for value
Together, the product owner and team discuss the options.

Based on business and technical factors, they agree on the fol-
lowing:

Book Interface Type Options
 Scanner (hardware)
	Keyed in data (UI)

Cash Payment Interface Type Options
 Cash machine (hardware)
	Keyed in data (UI)

Cash Receipt Interface Type Options
	Printed in store (report)
 Faxed (system to system)
 Emailed (system to system)

Step 6: Quality Attribute Options
Quality attributes are “the subset of nonfunctional require-

ments that describe properties of the software’s operation, de-
velopment, and deployment.” [14] Teams sometimes neglect
these crucial requirements until well into development. But,
we’ve learned that teams need to explore options for perfor-
mance, reliability, safety, security, scalability, usability, and so
on if they’re going to define a ready story and improve the
quality of the product’s ever-unfolding architecture.

There are several ways to specify quality attributes. For ex-
ample, you can write them as user stories, use Planguage (a
specification language) [15], list the quality attributes as user
story acceptance criteria, or incorporate them into the user
story text.

One quality attribute we need for our sample story is the
response time for printing the receipt. Borrowing from Gilb’s
Planguage tags, you can specify response-time requirements
as follows:

Tag: ResponseTime.CashReceiptPrintLaunch
Scale: Seconds
Meter: Elapsed time between pressing “Receipt” to the
start of printing
Minimum: No more than 7 seconds
Plan: 4 seconds
Wish: 2 seconds

Alternatively, you can write your story’s quality attributes
on the back of the user story card (or in your backlog man-
agement tool)—for example, “Cash receipt begins printing
within four seconds of pressing the Receipt key.”

The Sliced Story
Here’s a quick recap. We started with a big, chunky story:

“As a customer, I want to buy a product ...” Using the story-
slicing technique, we successively sliced it into these high-
value options:

User role type and state: Individual, anonymous buyer
Actions: Verify product price, calculate total purchase
amount, secure payment, generate receipt
Objects (type and state): New book, cash payment
method, cash receipt
Business rules: Payment currency must be specific to
purchase location, payment change amount is calcu-
lated as ...
Interfaces:

Book interface type: Keyed in data (UI)
Cash payment interface type: Keyed in data (UI)
Cash receipt interface type: Printed in store (report)

Quality attributes:
 Tag: ResponseTime.CashReceiptPrintLaunch ...

Our thinly sliced, ready story meets the INVEST criteria:
independent, negotiable, valuable, estimable, sized appropri-
ately, and testable. [16]

In development, the team details each story’s selected op-
tions. That includes building user acceptance tests, regardless
of testing methods or tools—the Given-When-Then construct
(e.g., jBehave, easyB, Cucumber), data tables (e.g., FIT or
FitNesse), or other scripting tool. Meanwhile, work-ahead
analysis continues on lower-priority options for upcoming de-
livery cycles.

And, yes, we have found this slicing technique useful for
requirements in forms other than user stories, including use
cases, snippets of text-user requirements statements, events,
and features.

Slicing for Success
By collaborating with business customers to explore re-

quirements options and successively slice them at the last
responsible moment, the team can continually groom the
backlog—and continually deliver well-understood, valuable
requirements. Along the way, everyone in the project commu-
nity benefits by expanding and deepening their requirements
knowledge.

This “just enough, just in time” slicing method is a fast,
efficient, repeatable technique that streamlines planning and
jointly engages the customer and team in optimizing value—
all goals of successful agile teams. {end}

ellen@ebgconsulting.com
mary@ebgconsulting.com

Appreciations
Mary and Ellen Gottesdiener thank Susan Block, Mike Cohn, Chris Matts, Tom
Poppendieck, Jeff Sutherland, and Bill Wake for their review and incisive
comments on a draft of their article ʺSlicing Requirements for Agile Success.ʺ {end}

References
[1] Wake, Bill. ʺTwenty Ways to Split Stories.ʺ XP123: Exploring Extreme
Programming, December 2005.

[2] Lawrence, Richard. “Patterns for Splitting User Stories.” October 2009.

[3] Rainsberger, J.B. ʺSplitting Stories: An Example.ʺ June 2007.

[4] Koskela, Lasse. ʺWays to Split User Stories.ʺ Blurts on the Art of Software
Development, blog, June 2008.

[5] Matts, Chris, and Olav Maassen. ʺReal Options Underlie Agile Practices.ʺ
InfoQ, June 2007.

[6] Matts, Chris. Feature Injection Episodes 1 through 4. LimitedWIPSociety.org,
May 2009.

[7] Sutherland, Jeff. ʺPractical Roadmap to Great Scrum: Systematically
Achieving Hyperactivity.ʺ Agile Bazaar, Boston, November 2009.

[8] Jakobsen, Carsten, and Jeff Sutherland, ʺScrum and CMMI‐‐Going from Good
to Great: are you ready‐ready to be done‐done?ʺ Agile 2009, Chicago, 2009.

[9] Harvey, Jack. ʺThe Product Owner Ready Board.ʺ Agile Product Owner Blog,
November 2009.

[10] Beaumont, Serge. ʺFlow to READY, Iterate to DONE.ʺ Xebia, July, 2009.

[11] Leffingwell, Dean. ʺMore on Lean, Backlog and Littleʹs Law.ʺ Scaling
Software Agility, January 2010.

[12] Cohn, Mike. Agile Teamwork: 3 Ways to Minimize Handoffs. Better Software,
March/April 2010.

[13] Denne, Mark, and Jane Cleland‐Huang. Software by Numbers: Low‐Risk, High‐
Return Development. Prentice Hall, 2003.

[14] Gottesdiener, Ellen. The Software Requirements Memory Jogger: A Pocket Guide
to Help Software and Business Teams Develop and Manage Requirements. GOAL/QPC,
2005.

[15] Gilb, Tom. Competitive Engineering: A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage. Addison‐
Wesley, 2005.

[16] Wake, Bill, op. cit.

EBG Consulting, Inc. Principal Consultant and Founder Ellen Gottesdiener
helps business and technical teams collaborate to define and deliver products
customers value and need. Author of two acclaimed books, Ellen works with
global clients and speaks at industry conferences. Learn more from her articles,
tweets and blog, free eNewsletter and find resources on EBGʹs web site. Contact
Ellen at ellen@ebgconsulting.com.

Mary Gorman, CBAP©, is senior associate at EBG Consulting and helps project
teams explore, analyze, and build robust business and system requirements
models. Mary serves on the Business Analysis Body of Knowledge committee of
the International Institute of Business Analysis and is the leader of the elicitation
subcommittee. She can be reached at mary@ebgconsulting.com and
ebgconsulting.com.

