
12 BETTER SOFTWARE NOVEMBER/DECEMBER 2009 www.StickyMinds.com

Inside Analysis

Managing Your Analysis Debt
by Mary Gorman and Ellen Gottesdiener

We recently heard about an agile project
that implemented four user stories. The
first story began, “As a sales associate
…”; The second story began, “As a sales
rep …”; and the third and fourth stories
began, “As a sales consultant …” These
stories and the resulting software suc-
cessfully delivered the customer’s under-
standing.

Now, flash forward three iterations.
The customer has had an epiphany:
These three users are really only one—
the sales rep. So the stories, rules, data,
and interface experiences are overlap-
ping and conflicting, and they need to
be refactored. This change cost the team
almost two iterations of work.

Technical Debt in Software
Projects

Ward Cunningham coined the meta-
phor of technical debt in 1992. “Ship-
ping first-time code is like going into
debt,” he said. “A little debt speeds
development so long as it is paid back
promptly with a rewrite. The danger oc-
curs when the debt is not repaid.” [1]

For large software projects, using
debt is often a wise financial strategy.
But incurring debt is always a risk, es-
pecially if it is high-interest debt and
you’re not paying close attention to the
cost. The same is true of technical debt,
and it applies not only to code but also
to architectural design [2] and even to
requirements analysis.

Analysis Debt
Analysis debt results when a team:
•	 Defines	 and	 implements	 require-

ments in a manner that limits or
disables future integration of var-
ious customer views, extensibility,
scalability, or reuse

•	 Uses	 requirements	 practices	 that	
make it harder to make changes
later, require extra effort to clean
up, and generally cost more

•	 Invests	 too	much	 in	 analysis	 too	
early

Analysis debt can be intentional or
unintentional. For example, customers
may intentionally limit requirements for
the next release, which can lead to re-
work in subsequent releases to “fix” the
resulting product. On the other hand, a
domain subject matter expert may unin-
tentionally provide inadequate product
details or make poor choices of what re-
quirements to deliver.

No development method is immune
to analysis debt. On traditional (water-
fall) projects, teams can overinvest in
analysis of unnecessary requirements.
Later, the team finds itself reprioritizing
and removing requirements.

On agile projects, teams are addicted
to delivery (in a good way!). Producing
working, tested software of value as soon
as possible pays off for the business. Yet,
it can have the unintended consequence
of incurring analysis debt.

Good Debts and Bad
Like cholesterol, analysis debt comes

in good and bad versions. Some exam-
ples of good analysis debt are:

•	 Delaying	 detailed	 requirements	
analysis of low-priority require-
ments

•	 Delaying	 scheduling	 and	 analy-
zing volatile requirements, saving
wasted time and effort in the face
of uncertainty

•	 Pretending	that	user	requirements	
dependencies don’t exist, so that
you deliver business-crucial fea-
tures while allowing the delivery
team time to learn how to deliver
efficiently

Recognizing the causes of bad analysis
debt can help you prevent or, at least, ac-
tively manage it. Table 1 shows common
forms of analysis debt we have observed,
along with suggested remedies.

Responsible Analysis Debt
The stakeholders of analysis debt—

the business customer, the delivery team,
and the senior managers who advise
the customer and team—must collab-
oratively decide when, why, and how to
incur analysis debt. Everyone should be

IS
TO

CK
PH

O
TO

 www.StickyMinds.com NOVEMBER/DECEMBER 2009 BETTER SOFTWARE 13

Let your
voice be
heard!

cognizant of the factors that justify the
cost of analysis debt for your product
and market—for example, earning short-
term revenue, delivering differentiating
features to a swiftly moving market, or
being first to market.

In some cases, it may be prudent
to incur the cost of analysis debt if
the realized income outweighs the risks
and cost of future nimbleness. Be sure
to incorporate the expected life of the
product into your analysis-debt assess-
ment. Most important, be sure that the
consequences of deferring the cost of re-
paying analysis debt (rework, repair, and
waste) are transparent to everyone.

The final accounting is clear: Analysis
debt will compound the longer you go
without paying it off. Be a prudent in-

vestor! Implement strategies to protect
against unintentional analysis debt, and
carefully and actively manage your in-
tentionally incurred analysis debt. {end}

Inside Analysis

For more on the following topics go to
www.StickyMinds.com/bettersoftware.
n	 References
n	 Recommended links

Sticky
 Notes

Table 1: Analysis debt causes and remedies

How do you detect and mitigate
analysis debt on your projects?

Follow the link on the StickyMinds.com
homepage to join the conversation.

