
Software Engineering

RAD REALITIES:
BEYOND THE HYPE

TO HOW RAD REALLY WORKS
Building what the customer needs now and delivering it

quickly is the new rallying cry for software development

by Ellen Gottesdiener

The volatile nature of business in the

1990s along with (hi: emergence of

newer technologies such us client/serv

er, object-oriented (OOl technologies,

and ;tn ever growing list of application

development tools has made rapid ap

plication development (RAD] a buzzword that falls off

the lips of almost every i/S manager and developer.

RAD has been described as a tool, a methodology and

an attitude. It is associated with prototyping and tech

niques such as joint application design (JAD), which

require customer involvement and commitment. It is

also feared as potentially a source of law-quality appli

cations thai do noi scale up or that cannot sustain the

demands of ongoing maintenance.

The questions beg to be asked: "Is RAD just an

other IAS fad'.' How might this approach to application

development change your life as a project manager or

developer? What can the roots of RAD reveal to us

about the essence of this 10-year old approach? Can it

live up to the pervasive marketing campaigns of tools

vendors? Whal must be done to succeed with a RAD

approach?"

DEFINING RAD

RAD is an integrated set of techniques, guidelines

and tools that facilitate deploying a customer's soft

ware needs within a short period of lime. This prede

fined lime frame is called a "timebox." The software

product does not "pop out" at the end of the develop

ment cycle, but instead evolves during the RAD devel

opment process based on continued customer feed

back. In addition, the whole software product is not

delivered at once, but is delivered in pieces by order of

business importance. In this way, the product is de

ployed in increments over time. (See Fig. I.)

Bach Increment, or "chunk" of the application

typically lakes three to nine months. The RAD process

[Hen Cotlesdicner ii president oi £HG Consulting, ln<., J Carmel, Ind.-

bMed facilitation, consulting and (raining firm specializing in helping

organizations cri'ale maiile business .mil rechn« si models for information

Systems. She can ho reached via E-mail .u 71201. i I53@t ompuserve.com.

Application Development Trend\ ■ august 1995

requires a small team of highly skilled individuals (in

cluding customers) to work together using tools ihat

accelerate the testing, prototyping and construction ar

tifacts of the software product. It should be noted,

however, that there can be exeptions to the small team

size, particularly when dramatically new technologies

RAD Incremental Delivery

Chunk 1

Time; Tr.nlilinri.il Product Delivery

Chunk I Chink 2

Chunk 2

Chunk I

Chunk 2

Chunk 2

Chunk 3

Time: RAD lncrenienf.il Product Delivery

Source; E{tG CniiMilunj[Fig.

RAD products evolve based on continual customer feedback and

.ire deployed in increments over lime.

and techniques are employed. (See "Cigna Develops

One-Year Health Benefit System," page 35.)

I'LATFORM INDEPENDENCE

RAD techniques and tools are platform indepen

dent. RAD is not an excuse for "hacking" out software.

For the PC developer applying RAD. more discipline

is needed. For the mainframe developer applying

RAD. more flexibility is needed. The key is striking

the right balance.

The software product development process is very

different than traditional application development.

Rather than focusing (in steps, tasks, and interim deliv-

erables, RAD is oriented toward product delivery cycles

defined by an end dale. Thus, the successful delivery ol

http://www.ebgconsulting.com/
Ellen Gottesdiener
Sticky Note
ellen@ebgconsulting.com

Software Engineering

a product is based on the skills and ability of the team lo

learn about customer requirements as the software prod

uct is being built. In an evolutionary process, [earning

and adopting 10 the environment is key. By exposing the

software product lo the environment quickly and by let

ting customers critique, review, and provide feedback

on a prototype, the team can make changes to ibe soft

ware to allow for belter adaptation to the future produc

tion environment. The product evolves within the time-

box while the team learns. In addition. Hie quality of the

application is dependent upon maintaining a stable

"memory" of the product structure. This is accom

plished through the use of models under

lying the interface design.

RAD ROOTS

RAD emerged not from the PC or

client/server world but from the

midrange Digital Equipment Corp.

VAX environment in which Scott

ShllltZ, then a project

manager Bt DuPont,

used Cortex's CorVi-

sion code generator

tool in conjunction

with new develop

ment techniques. ShultZ called it

rapid iterative production prototyp

ing (Kipp). Kipp involved uniquely

combined tools, methods and people

to deliver systems quickly to cus

tomers. His approach was later

popularized by James Martin's

1991 book. Rapid Application

Development.

Now a senior manager at Ernst

&. Young LLP in Dallas and having

participated in over 100 RAD pro

jects in his career, Schultz's approach was incorporated

into Ernst & Young LLP's Navigator methodology to

form the Accelerated Systems Development (ASD)

route map. ASD. says ShultZ, is essentially the "grand

son of R1PP." Shultz's colleague during Rll'P's early

days at DuPont, Bucky Wallace, adapted similar tech

niques to the MVS mainframe environment. Working in

parallel with Sbultz. Wallace formed a technology

group called Application Systems with Accelerated

Productivity (ASAP) within DuPont. ASAP used main

frame tools with a traditional waterfall methodology.

Starting with the goal of increasing productivity by ten

fold, Wallace discovered thai even if the code genera

tion portion of the lifecycle was reduced lo 0%, overall

savings in lime only came lo 3GS&. "I discovered that

you have lo change the way you do things — the tools

were not enough." said Wallace, now President of AS

AP Systems Inc., Landenberg. Pa. "Tools don't solve

problems, people solve problems," he added.

BUSINESS PROBLEMS FIRST

Wallace emphasizes in his RAD approach the ne-

Bull's-Eye for RAD

cessiiy of focusing on the business problem first (See

Fig. 2.1 Other RAD practitioners began by using tools

in a mainframe environment while also changing the

development methodology. Rob Dixon. a partner with

Tier Corp. of Walnut Creek. Calif., and author of Win

ning with CASE, used the IEI; CASE tool from Texas

Instruments. Piano, Texas, in a Cobol/DB2 project. Dr.

Sam Bayer, consultant at Sapiens USA, Inc., Durham,

N.C., used Sapien's own tools in mainframe RAD pro-

jecis. — A detailed accounting of RAD in the main

frame environment is told in Kerr and Hunter's book

Inside RAD. a book that credits Shultz for his early

work ;u DuPont.

Although tools are very

critical to the RAD approach,

the tools alone will not create a

stable, scalable software prod

uct. "The tools have taken

over the tSSfil," said Shultz.
It is critical to look beyond

marketing to the people,

process, and organiza

tional issues to make

RAD what its inventor

envisioned it lobe.

STEPS IN RAD

The RAD process de

fies a linear definition of

steps carried out in a se

quence. RAD begins by defin

ing the desired product in an ini

tial planning phase. During

planning, a definition of

the project scope is com

pleted along with some

preliminary data/process

analysis, risk assessment

and estimating. A timebox is chosen — a fixed period

for building a fragment, increment or chunk of the ap-

plicalion. Within lliis timebox, a spiral process occurs

involving prototyping, modeling, architectural design,

construction and testing. (See Fig. 3.). Each cycle

within the timebox is completed "multiple times, each

time bringing the solution to higher levels of sophisti

cation and completion." said Shultz of Ernst & Young.

In some cases, a higher level of analysis may be need

ed to insure proper prioiitizalion of RAD projects. An

information engineering-like analysis may then pro

ceed these steps. (See "USA Group Spices up .Scholar

ships." page 32.|

Rob Dixon. Tier Corporation, described conduct

ing a one-month business area analysis (BAA) to de

termine the subsets of application development needs

in the whole business area and divide them into chunks

of requirements that can each be fulfilled in four to

nine months of development. During this one month

BAA, the team creates models to define the business

context, including data, functional decomposition, and

perhaps object models with the aid of Case tools.

Source: ASAP Systems FifJ. 2

77je primary focus in RAD should he the

business problem, not the technology.

AUGUST Iff.1; ■ Application Development Trends

Software Engineering

"We lake the most compelling ones

and do them in the first chunk," said

Dixon. Burly and rapid definition of the

project means understanding the busi

ness problem, assessing the risks, priori

tizing ihe needs, and defining the incre

ments in order of development. These

early activities have ilie affeel of team-

building us they focus sharply

on business needs and product

delivery. It also does much to

gain and maintain customer in

volvement, a key aspect of the

RAD process.

Applying more discipline

and less an (and guesswork I to

RAD planning has been suc

cessful for RDI Software

Technologies, Des Plaines, 111.

RDI uses a well-defined pro

cess for sizing and estimating

projects, according to Todd

Wyder. company methodolo-

gtst. RDI uses metrics, includ

ing function points and quality

function deploy IQI;D). a se

ries of customer-oriented

ranking techniques rating,

software complexity and risk.

After an initial J AH session to determine

scope by defining inputs and output.

RDI works with customers to determine

application chunks by defining "use cas

es" — an event-driven analysis tech

nique invented by Ivor Jacobson. Each

chunk is assigned a customer-risk-com

plexity factor, and the whole effort is es

timated using function points.

For RDI ibis technique is objective,

repeatahle and understandable. Cu.s-

tonier.s "buy" project components based

on tlic cost of the function point. When

changes occur, as they will, function

points of the requested change arc deter

mined to estimale the cost and lime

needed lor the alteration. Customers can

ihen decide if they want to buy the mod

ification, "We take nine months to one

year to get 12 to 15 deliverables in order

of importance to the customer, so it's

very exciting to the customer," said

Wydcr of RDI. "The higher risk and

complexity components will be deliv

ered carl; in the project."

TIMEBOXING

Timeboxing is an essential project

management aspect of RAD. It forces

the team to anticipate reducing the scale

of product delivery, requires focus on

customer priorities, assumes continual

change will occur and imparts lo the

team a sense of urgency.

A timebox is a mechanism to con

trol resources and delivery scope: it pro

vides a dramatically different way to

manage a project. "The timebox is based

on the belief thai we can do something of

Timebox for Each "Chunk"

Plan.

analyze,
size, chunk,

risk assess, '
architei i

Source; EHCi Consulting Fig. 3

Timeboxing forces llie project team to have a market

product orientation; each limehtn is <) release or version of the

system.

significance for the business within 90 to

I 20 days." said Bucky Wallace of ASAP.

"Multiple timeboxes can go on sequen

tially, in parallel or staggered, and are

linked together by project management

and data management. In this way, wo

develop systems the way they are sup

ported: each timebox is a release, or ver

sion of the system." (See Fiy. -1.)

Timeboxing forces the project team

lo have a market and product orientation.

Planning product components by lime-

box, rather than tasks and activities by

deadline, is an effective means of deliv

ering real value. Jim Highsmith, princi

pal of Knowledge Structures Inc.. Salt

Lake City, Utah, collaborated with Sam

Bayer of Sapiens to devise a RAD ap

proach that they named Radical Soft

ware Development, which includes the

use of "customer focus groups." The

customer focus group, a concept bor

rowed from consumer marketing, is a

team of knowledgeable customers thai

gather in JAD-like sessions to review an

implemented portion, or "feature set." of

the application.

}AD SESSIONS

The Radical Software Development

cycle begins with a JAM session to arrive

at a common goal, scope and si/.e. The

development team and customers togeth

er determine the project's timeboxes. Ac

cording to Highsmith, "The team has to

be able lo juggle features lo meet the lime

that the customers help to decide. The

customers know that any feature-set

planned for the last cycle has the poten

tial to be deleted if the overall

timebox is in jeopardy. Time

boxing doesn't work unless

both developers and customers

understand the need for trade

offs."

The focus group is facili

tated lo de-politicize and de-

emotionalize diverging views.

Il is called a focus group to un

derscore the intent and origins

of the concept. "Focus groups

work so well because cus

tomers are given things to do

that they understand. They en

joy and understand and gel

positive feedback from criti

cizing developers," said Bayer

of Sapiens. He recommends

that the first limebox should be

delivered in three or four

weeks of project initiation to validate the

daia model. A menu structure is thus de

livered that demonstrates the Cruding

(create, read, update and delete) of the

major entities.

According lo Bayer, "this first ver

sion also establishes a true partnership

with the customer. The product is ugly,

but il is also kind of in their language.

They are still skeptical because they

can't use il until oilier versions are deliv

ered thai capture and implement the

business rules and their workflow. Hut at

each focus group, they are given the op

portunity lo criticize the application

without criticism of their criticism."

Sliuli/ suggests such other options

as: put it on a wish list, add resources,

substitute other items or just do not do il.

The limebox concept is thus a man

agement control device, forcing the team

to maintain and manage scope.

TIMEBOX ITERATIONS

Release, version, feature set, incre

ment, cycle, fragmenl. phase, segment,

build, cluster, use case, chunk, all are

terms thai mean the same thing. They are

a subset of usable functionalit)1 thai is

delivered to the customer ;it a predeter

mined poini in lime. Chunks are created

Application Development trends ■ AUGUST

Software Engineering

USA Group Spices Up Scholarships

RAD effort incorporated E&Y's Navigator, Sterling's ADA/, CCI's tool, training

It could be likened lo a

tortilla chip whipping through

.1 batch of spicy dip. Team

Salsa is the Fishers, Ind.-

based USA Group's

client/server development

jjroup for scholarship and

loan systems administration,

Team Salsa used a hot-pursuit

methodology lo deliver the

first increment of a new appli

cation in three and one-half

months. Informally known as

Salsa, the completed applica

tion will process loan and

scholarship applications for

private Institutions, clients

and associations,

The application is divided

Into phases and timed to cor

respond with the actual cycle

of scholarship and loan

processing.

The application's first

phase processes client-sup

plied demographic data, cre-

ation of the application pack

ages for potential applicants,

application entry and edit, an

interface lo facilitate phone

customer assistance and call

history tracking.

The second phase, deliv

ered in five months, processes

ranking and scoring the appli

cations and correspondence to

all applicants — approved or

not-approved. The final phase,

to be delivered in three

months, will process funds

management and lurid recon

ciliation. Thus, each deploy-

nieni of the system builds on a

previous version, thereby

forming an incremental soft

ware development process.

The delivery dates for each

timebox increment maiches

the real world school year

loan processing cycles. The

application also supports USA

Group's scholarship manage

ment business area strategy,

which includes such goals as

compliance with internal audit

reporting, provision of en

hanced service options, and

increasing of USA Croup's

market share.

The Salsa application is

used by seven staff members

in the scholarship manage

ment group. It uses a two-tier

client/server architecture, wilh

Windows-based clients run

ning PowerBuilder from Pow

ersoft, Concord, Mass.,

against the server, which uses

the Sybase System 10

database engine operating un

der Unix on an HP9000. The

Sybase database is comprised

of 22 tables with some 300

attributes.
Database connectivity is

accomplished with Sybase's

DISLib and CTLib middleware

running on TCP/IP. Prior to

Salsa, the application consist

ed of a combination of manu

al processes, Lotus spread

sheets and Paradox databases.

The project began wilh a

small, well-trained team of

five: project leader Dawn

Denman, two developers, a

testing analyst and Jon lones,

a technical consultant. Addi

tional I/S resources, such as

database administration and

security, assisted the team on

an as-needed basis. The end

users, the seven loan analysts,

were always available as ad

junct team members.

The GUI developers had

previously been trained in

PowerBuilder and had used it

to develop another single-user

application. USA Group had

Navigator Series from Ernst &

Young, Irving, Texas, as a

methodology, and the team

had experience using the in

formation engineering path of

Navigator and the ADW CASE

tool from Atlanta-based

KnowledgeWare Inc. (Now

owned by Sterling Software.)

So Denman decided to "pick a

recipe" from the Navigator

methodology for the Salsa

project.

Beginning with a scholar

ship management business

area requirements analysis

(BRA) activity that took three

weeks, the team conducted a

Salsa business analysis in

three weeks, conceptual sys

tems design in one week,

physical design in 10 days, it

erative prototyping in two

weeks, and development and

deployment in six weeks.

Denman set the timeline for

the phases herself to fit within

the overall ihree and one-half

month timebox.

As part of analysis and

design, the team created mod

els of the structure and activi

ties needed in the application.

Models built during business

analysis included: a context

diagram thai had 27 data

flows, a process decomposi

tion diagram with 19 elemen

tary processes, business trans

action process descriptions

and an entity relationship dia

gram (ERD).

Conceptual systems de

sign entailed converting the

elementary processes into

business transactions and cre

ating process descriptions de

scribing the triggers, logic

flows, and inputs and outputs.

This work was done wilh ex

tensive end-user involvement.

"The best user involvement

I've ever had," said Denman.

End users reviewed and cri

tiqued all the models generat

ed in ADW.

The physical design,

completed In 10 days, con

verted the logical design into

the physical database schema

and the design for the stored

procedures. The ERD stored in

ADW was used to create the

physical schema.

Quantitative information,

such as the number of transac

tions and records expected,

was used to decide if a pro

cess should be allocated to the

server tto be executed as

stored procedures) and not to

the client (and run as Power-

Script code).

The Salsa team immedi

ately followed these design ac

tivities with iterative prototyp

ing In PowerBuilder. In this

two-week period, the team

designed, constructed, and

tested the user interfaces.

This entailed two itera

tions of the interface. After the

first version was reviewed by

the end users, changes and is-

within a timehiiN and can be June se

quentially, concurrently, or overlapped

with each other. (See I-'ig. 4.) A chunk

can be prioritized based on business

need, dependencies and/or risk. For ex

ample, a risk-based approach involves

creating a wide navigational prototype

— us opposed to B deep prototype — to

validate the data model, lo discover tbe

overall customer workflow or to test the

feasibility of new technologies before

proceeding with the other components of

the RAD effort.

Anecdotal evidence supports the no

tion that three iterations are needed to

complete a chunk, although variations

can and do exist. An iteration can be

measured in lime either by number of it

erations or by more concrete metrics

such as function points. The process is

likened to filling up a shot glass as op

posed to filling up a. water glass, said

ISucky Wallace. "You pour water into the

shot glass, implementing hunks of dis

functionality instead of trying to 1111

up the water glass at once."

ARCHITECTURE

Determining what is a chunk and

the order of creating them occurs in the

RAD planning step. Certain chunks de

pend upon other chunks. For example,

an order fulfillment chunk depends upon

the order entry process to create the "or

der" object and the order entry process

in turn depends on the pricing process to

Application Development Trends ■ AUGUST 1995

Software Engineering

sues were documented and

the learn created another jjro-

toiype. In some instances, the

team created two samples of

■in interface so customers

could choose between them.

A total of 42 dialog report

and eighl paper reports were

designed.

This phase was possible

within two weeks because a

signifcant skills and knowl

edge curve had already been

overcome. USA Croup had

previously purchased the GUI

Guidelines product from Cor

porate Computing Internation

al, Bannockbum, III., and the

designers had attended Corpo

rate Computing's effective GUI

design training.

Moreover, through work

ing closely together on the

business models earlier, a high

level of trust between the de

velopers and the users had de

veloped by this point in the

project.

A few of the technical

difficulties the team encoun

tered are being addressed for

the last increment of the ap

plication, according to Jones,

who served as the technical

lead on the project. There

were problems getting some

of ihe PowerBuilder extended

attributes in the physical

schema generated by ADW,

so)ones is looking at other

tools such as ERWin from

Logic Works Inc.. Princeton,

N.J., as the bridge between

logical and physical database

design. Sharing a single user

version of ADW also became

cumbersome at times. Al

though team members had

some basic SQL training, it

was noted thai extensive train

ing on Transact SQL and

Sybase stored procedures

would have helped.

Denman warned other

project leaders not to attempt

RAD without absolute user

commitment and involvement.

In addition, it would not be

possible to accomplish RAD

for a business application ih.it

is not well known and under

stood. She noted thai manage

ment buy-in to RAD goes be

yond project approval. "It

means removing obstacles,"

said Denman.

Although the team had

concerns about the lime

frame, it worked together with

the customers to meet ihe

deadline.

At the end of the project,

when a LAN crash disaster

caused five days of lost work,

the team had to pull some sig

nificant overtime to meet the

date. Another significant as-

peci of successful RAD is

keeping the team small.

"There's been a lot of media

hype about flat team struc

tures," said Denman, who

found thai team rapport is es

sential in making RAD work.

Denman also commented thai

some deliverable! "can't al

ways be preity," because of

the constraints of timehoxing.

A final piece of advice to

RAD hopefuls: be sure your

technical infrastructure is al

ready in place before the time-

box begins. This includes es

tablishing the workstations

and network, the database en

gine, GUI guidelines/style

guides, and basic training.

RAD is more of ,1 "mind

set," said Dcnman. It requires

using a flat organizational

structure, using GUI develop

ment tools and streamlining

the traditional application de

velopment methodology.

With these ingredients on the

table, the Salsa learn has

quickly created an applica

tion, filling a real need for

USA Group, like a chip

through dip. 3

— Ellen Gottesdiencr

] 101VUT0R 0ACM1

Pmbictn Tracking

Q4THACK™

Test Script Automation

Q4R1 \

Stress Testing

MSTRESS™

1-800 -486-7565

a

i ml, ALJ|L.iTf.HnrQV ' \A> .m

I IT*M ATOR

'I ■"! ■>! I ' !■■ . I [h"<ll '.' I'll

, i .in .j Powenufiand !'■■»,jH

kim Jtulttn jil.I iP..-

I < '..<[■<.: mi 'i

DirectTechnology Ltd. 10 East 21st Street, New York, NY 10010 {212)475-2747 Fax (212) 529-4941

0 ■ ■ ■ i 1 ■. R\- . ' . : I"- ■

Software Engineering

create the order. This implies that early

in the RAD cycle, architectural design

must be completed to discover these de

pendencies. "You need a good layered

architecture and concurrent develop

ment techniques," said Chris

tine Comeford, whose compa

ny, Corporate Computing

International, Bannockbura,

111., provides a process man

agement tool called RadPath.

Corporate Computing recom

mends an architectural layer

ing made up of GUI, applica

tion logic, business rules and

database access.

The successful development of the appli

cation used a combination of RAD tech

niques and tlie design templates from the

insurance architecture models. Having

the application architecture of a RAD

Timebox Variations

Time

edge Structures. "That is why we arc

seeing an increase in ihe number of data

warehouse projects, namely to permit

disparate databases and eliminate islands

of automation," Similar danger may be

lurking lor enterprises that en

gage in RAD efforts withoul

considering how and if the ap

plication architecture will fit

with the resl of the technology.

Project Management

Timebox a

MODEL DESIGN

A solid application archi

tecture is based on well-de

signed models of the data,

process or objects. Tradition

ally, these models are built in-

house from scratch by the ap

plication team as they build

the software. Alternatively,

they may be part of the soft

ware modules when a third-

party software package is pur

chased. Recent research

.shows a growing trend in pur

chasing design templates —■

workable software built from

design models with a CASE tools that

can be modified at the design level for

the needs of the organization. This has

been explained by llofman and Rockari

in the article "Application Templates:

Faster, Better, and Cheaper Systems," in

the Fall 1994 issue of Sloan Manage

ment Review.

An existing design is thus cus

tomized, saving the RAD team from

reinventing the models from scratch.

Sam Bayer from Sapiens experienced

the combined speed of RAD and power

of a template style architecture in one

consulting engagement. He worked on

an insurance application with an archi

tectural template created by a consor

tium of 40 insurance companies and

now marketed by IBM as Ihe Insurance

Application Architecture (IAA). The

complete template contains some 170

entities, their relationships, and pro

cesses to support some 500 business

functions.

On the project Bayer was involved

in. the team used a subset of templates to

build a working software application.

Timebo* B

Timebox D

Data M.iii.igemcnt

Source: ASAP Syilems Fig. 4

Multiple timeboxes c.ui go on sequentially in parallel or

staggered ,md are linked together by project and data

project lit into the overall, enterprise-

wide technical architecture can be a chal

lenge, however. In some cases, the enter

prise architecture needs lo be in place

before any RAD efforts can begin.

.1 solid

application

architecture is

based on well-

designed models

ofthe data,

process or objects.

"Prior to building a significant num

ber of RAD projects, it is necessary to do

an architectural definition that includes

tools, databases and implementation ar

chitecture." said Highsmith of Knowl-

ENABLEMENT TOOLS

Tools are a critical part of

ihe RAD process. Beyond the

typical tools associated with

RAD — those that build the

GUI interface, for example —

arc tools that capture the appli

cation models, document the

development process, create tesl

scripts enabling the whole test

ing process, generate and build

code and assist in software con

figuration management. 1/S or

ganizations may be misled or

misunderstand the role of tools.

A good example of RAD

practitioners who use a variety

of power tools is RDI Software

Technologies. The company

uses all of the following:

■ Rational Rose from Ra

tional Software Corp.. Santa

Clara. Calif., for defining project object

models;

■ Lotus Notes from Revelation

Technologies, Stamford, Conn., for all

documentation, which also permits cus

tomers to gel access to all project dala;

■ Interface development tools such

as FoxPro, C++ and Visual Basic from

Microsoft. PowerBuilder from Power

soft. Concord, Mass.

■ SourceSafe from Microsoft for

configuration control;

■ QAPartner from Segue Software,

Newton Cenire. Mass., for regression

testing and automated script building;

■ PC Lint from Gimpel Software.

Collegeville, Pa., for C++ error checking:

■ BoundsChecker from Nu-Mega

Technologies, Nashua. N.H., for C++

memory leakage: and

■ AppPolisii from Encore Compuiei-

Corp., Ft. Lauderdale, Fla.. for interface

design spell, button and control key

checking.

MEASURING RAD

There is no industry standard by

Application Development Trends ■ AUGUST

Software Engineering

Cigna Develops One-Year Health Benefit System

RAD team delivered using Digitalk's Smalltalk, OTI's Envy, ObjectShare's GUI Tool

Imagine a group of high

level I/S managers attending a

five-day course on Smalltalk

as a means lo understanding

object technology ,ind tools.

That event marked the com

mitment by management of

Cign.i Corp.'s Cigna Health-

Care division in Bloomfield,

Conn., to commission a one-

year R&D effort to develop a

benefit information decision

system. The project beg,in in

1992, after having been at-

tempted several limes before

within the division.

In the latest attempt, ,ic-

cording lo Alan Kirk, lead ar

chitect, Ciiin.i Healthcare, the

project took a completely dif

ferent form. The application

development effort in the lat

est approach included a busi

ness process reengineering

(BPR) effort. Cigna developed

a system thai enabled it to

clearly define benefits pack

ages for any client purchasing

a Cign.i health care product.

The benefit information

decision system application,

created within a one-year

limehox, was deployed in one

of the six Cigna managed care

service centers, each of which

has 30 to 100 users. After the

one-year RAD effort, the RAD

project was recommissioned.

The team rethought the cycle

lime for delivery and derided

thai the focus should be on

six-month deliverable*.

This accelerated delivery

schedule is now being used lo

roll-out new and/or redesigned

functionality lo the applica

tion. Currently, the third evo

lution of the application is in

development by 14 project

team members. The applica

tion allows Cigna's service

centers to create, modify,

share and report on health

care product benefit informa

tion. The first application had

three business functions; prod

uct engineering, benefit plan

sculpting and inquiry, ll was

built in collaboration with a

consulting firm, Symetrix, of

Burlington, Mass.

A learn of 12 to 5H team

members built the system, and

during one two-month period,

the project team grew to as

many as 35 members. The

consultant provided project

management and half of the

developers. Half of the total

team were business analysts.

The effort continues with all

Cigna employees located in

Bloomfield.

The application interface

and business logic was built

using Smalltalk from Digitalk

Inc., Santa Ana, Calif. The

learn wrote routines lo store

persistent data in Sybase as

binary large objects (Blobs) in

image columns. Each object

has its own row. Envy from

Ottawa-based Object Tech
nology International Inc., also

used by developers, permits

partitioning an object's meth

ods to different application

components, thereby permit

ting their extension and

reuse. The team also used

WindowBuilder from Object-

share Systems Inc., Santa

Clara, Calif., for building user

interfaces. A two-tier archi

tecture was used in the first

version wilh OS/2 clients run

ning Smalltalk and the re

gional server running Sybase

under OS/2.

The process model for de

livering benefit information

application was an evolution

ary one. The first release of

the software product wits de

ployed in "the real world."

Improvements were needed

and recognized, and subse

quent versions of the whole

application have been de

ployed. Each version has been

reshaped in both form and

functionality from the prior

version. Six months after the

first version was deployed,

80% of the application had

been rewritten, and additional

functionality had been added.

The rewritten portion included

redesigning objects, a step

that permitted the end users lo

more efficiently and easily

drill into benefit plans.

The method for building

the system was very different

from any method previously

used. The team would

"chunk-up a development ef

fort and we would assign one

or more analysis, developers,

and users," according to Kirk,

who was the lead architect for

the effort.

For each chunk, the team

tools a portion of the interface

and returns it to the rest of the

development team to see how

it Integrated with the rest of

the chunks. The team chose to

work with the users and show

them the interface and "let it

settle for a while."

Different team members

had different preferences tor

when they would share their

"chunk." Some, like Kirk,

shared iheir plan and design

before coding while others

waited until after it bad been

coded.

Smalltalk, as the develop

ment tool, permitted rapid

rewriting of all or subtle parts

of the application. Developers

can incrementally add func

tionality to Smalltalk objects

lo make them richer in behav

ior. The RAD approach goes

beyond mere prototyping, ac

cording to Kirk. "You build to

implement and show the inter

face to the client. We typically

have to write things three

limes before we get it right,"

he said. Kirk also noted (hat

object development enables

modeling of the business with

flexibility and "provides a
strong methodology to model

£*r-COMIN<3 SOON ~
^TO ENLIGHTENED ENTERPRISES EVERYWHERE!

THE

MOST ROBUST

AND ADAPTABLE

CUENT7SERVER

APPLICATION-BUILDING

STRONGWARE IN ALL GALAXY-DOM! A COMPUWARE PRODUCTION!

For a free color episode of Commander Uniface quelling an

outbreak of information stagnation on the Hamidic planet

of Drago, call 600 365 ■ 3S0& orcatch us on the "net" at

uniface _ Info&compuware.com

COMPCIWARE
Uncomplicaling Your Life

L jihI UN!i-.\(I-. in: rcfttKered fnUtinarfo ol Cmnpaware Cd

©1995

Chcle #35 on Reader Service Cafd

Software Engineering

and build; it is a faster devel

opment approach."

For the first effort, objects

were modeled with paper and

pencil. The learn also used a

bit of class/responsibiliiies/col-

laboratron (CRCI modeling ,

an object methodology de

signed by Rebecca Wirfs-

Brock. Currently, Kirk is inves

tigating object-modeling CASE

tools lo accelerate object anal

ysis and design and for storing

models required to crass-train

new team members.

The "peopleware" aspects

of ihe project were a signifi

cant factor for success. Team

decision making wns collabo

rative, not directive. No one

person was in charge, al

though there was a designated

project manner. That manag

er let ihe team, as a whole,

prioritize what would be de

livered and when it would be

delivered. The team set up

two-week delivery cycles,

"It ran like a Swiss

watch," said Kirk. "Every two

weeks we'd plan the nexi de

liverable, always focusing on

the most importanl pieces
within those two weeks." The

team held daily morning

meetings to review issues,

and it also held a

longer status meet

ing on Monday

mornings.

The RAD effort

required significant

education in both

methods and tech

nology. Skills, such

as building an effec

tive GUI, working

in a PC environ

ment, and the

biggest hurdle, understanding

objects, required learning.

Among the greatest learning

challenges were such new

concepts as class hierarchies,

order collection, containers,

arrays and dictionaries.

"They use the term 'new

paradigm' and it's really true,"

said Kirk. "It lakes longer than

you want to admit," he added,

"perhaps three months to be

competent. But you're not an

expert unlil you've had 18

months or maybe three years

of experience."

In addition to using the

object technology,

analyzing and de

signing business

objects sometimes

brought interesting

and unexpected

surprises. Subile,

hidden objects

emerged, which

did not appear dur

ing initial analysis.

For example, said

Kirk, without real

izing it, "clients make choices

about the product thai were

not verbally expressed during

objecl modeling," but were

caught once the client had its

hands on the application.

Kirk outlined critical suc

cess factors for both the initial

and current benefit informa

tion decision system learn:

good lools; user buy-in; un

derstanding by the users that

there will be sacrifices in the

name of speed; and time after

deployment to perform re

work.

Kirk noted that al times

the systems team members

would create "spaghetti" to

get something out quickly and

then il would be necessary to

go back to the core technolo

gy to rework it with a better

technical foundation. Howev

er, according to Kirk, the time

to perform that rework was

outweighed by the value of

speedy delivery — as long as

time was taken subsequently

for technical cleanup.

Reflecting on the first

one-year RAD effort, Kirk said

the team erred on the side of

speed. If one were to imagine

a continuum with analysis

paralysis at one end and

hacking al the other, they

would have spent more time

on analysis. □

— Ellen Gottesdiener

which to measure .software, although

function points seems to be a de facto

standard or Foundation For capturing pro

ductivity and delects in software. Some

RAD metrics factor in other elements

such ;is skill levels of individuals, num

ber of dialogs, events, risk factors, and

degrees of documentation. Metrics for

RAD are relatively new.

As a rule of thumb, according to

Rob Dixon. Tier Corporation, seven- to

nine- month RAD efforts typically entail

3D entity types. Highsmith of Knowl

edge Structures, says that each RAD

project lends to he less than 1.000 lo

1.200 function points. Comaford of Cor

porate Computing, finds that m individ

ual with beginning skills can produce 20

"work units" ii month — using a modi

fied form of function points in die Rad-

I'alh estimator tool — increasing to 50

and then 80 works units for intermediate

;md advanced individuals.

Capers Jones, metrics guru and

president of Software Productivity Re

search. Burlington. Muss., pointed out

[hat RAO has declining value on large

projects, and thus it is best for efforts

sized at up to 500 or even 1,000 function

points. His research indicates that fewer

than 5'/i of all commercial software

shops are using RAD. Thai may change

in lime. "When something becomes pop

ular, it becomes explosively popular,"

said Jones.

Another perspective is provided by

RAD's originator. Scott ShultZ, who

points out thai function points are de

ceiving, because the lools automatically

generate some of ihe arlifacls that ate

counted in function point analysis. "If

we look past Ihe issue of productivity —

when we once looked to save a few

weeks lime — ihe critical palh is now

users who have to iransfer information,

make decisions and prepare for and man

age implementation of the software

product. We have been measuring ilie

wrong things in the RAD environment

We should be focused on the productivi

ty of the user's decision-making and

change management." said .Shuli/.

TESTING OS RAD

The benefil of applying RAD to

client/server development is not yet

proven, according to C;ipers Jones.

"Client/ server has its own set of prob

lems, such as horrendous quality," he

warned. "The industry standard is Iliree

defects per function point, while for

client/server il is four defects per func

tion poini. The best prevention steps ;ire

manual inspections and testing."

Jones' research indicates that in-

speciion is more than 95% efficient in

defect removal. "The best prospeci for us

is the team that has built one client/serv

er application and tested it manually."

said Eric Schurr, vice president of prod

uct management and marketing for

SQA, whose company offers a GUI

client/ server testing tool and methodolo

gy called SQA TeamTest. "Now they

know how important and difficult il is to

test a client/server application. The only

way to test it properly is through

automation. In addition, you can't wait

to the end of the RAD project to do ;i

test." said Schurr.

Teslirij: provides quality-related

metrics, such as defects by delivery cycle

and priority of defect correciion. I'rojecl

defect tracking "moves project man

agement oul of ihe re;ilm of feeling into

the realm of fact" and can assist in mea

suring application tjuality by identifying,

categorizing and planning how lo fix

bugs. In addition lo testing tools, (esiing

as a Hfecycle process is built into RDI

Software Technology's RAD approach.

This is accomplished by defining and in

volving ii testing role from the beginning

Application Development Trends ■ AUGUST

Software Engineering

of each project. RDI assigns a quality as

surance (QA) role to each project and an

additional technical QA person to larger

projects. These individuals are not devel

opers, because as Todd Wyder pointed

out, "The tester is into breaking and the

developer is into making."

SKILLS/ROLES

The RAD process requires skilled

individuals to play one or more roles and

requires increased knowledge of both

business and technology. (See "Relearn-

ing: The Keystone for I/S Technology

Migration," A/D Trends, December

1994.) "We need 'renaissance people',"

said Shultz, "people who know a bit

about everything, but we also need spe

cialists like database administrators." I/S

typically provides the people to perform

such roles as facilitator, applications ar

chitect, GUI designers/developers, ap

plication developers and QA testers. An

infrastructure group may dip in and out

to assist the core project by providing

expertise in database administration,

networking, prototype design and archi

tectural design.

Whatever project organization is

used, it must facilitate RAD's need for

high performance work teams. Not all

members can know all the tools, meth

ods, standards, libraries and technolo

gies. That is why roles are necessary.

Each individual would ideally play mul

tiple roles, for example, application ar

chitect and data administrator. Multiple

roles played by several developers may

also be necessary, and roles should be as

signed to critical players and to cover

important bases.

CUSTOMER ROLES

Most critically, customers must pro

vide several roles in a RAD project and

be active team members. An executive

sponsor must be identified who approves

the project and permits the business ana

lysts the authority to approve the deploy

ment of a RAD increment. Business ana

lysts will be part of the project team

defining data, business rules and work

flow and also critiquing the interface

prototypes. In addition, the team needs

to have the right kind of users — not just

business experts but also ones "who are

willing to not haggle over added func

tionality within the context of that

phase," pointed out Marie Benesh, divi

sion I/S manager at Corning Inc., Corn

ing, N.Y.

Benesh participated in a RAD pro

ject last year. People on the RAD team,

typically four to seven people, must

learn to behave differently. Traditional

I/S roles must be played with great flexi

bility. For example, a database adminis

trator may be asked to create and drop ta

bles many times in a RAD project, to

accommodate multiple iterations and

multiple increments of the software

product, instead of once or twice as in a

Tlw software

product does not

development

cycle, but instead

evolves during

RAD development

based on

continued

customer

feedback.

traditional I/S project.

The project manager must place less

emphasis on plans, tasks and deliver-

ables and more on problem anticipation

and immediate resolution of issues that

would traditionally take days, weeks, or

months to resolve. The project manager

is a cheerleader, who excels in communi

cation skills, has a deep appreciation of

the technical details and should not be,

as Sam Bayer said, "retentive about the

plan." Finally, all team members must be

"comfortable with the ambiguity," point

ed out Benesh.

THE RAD ATTITUDE

"Evolution is chaos with feedback,"

said physicist Joseph Ford. A RAD ef

fort is chaos bounded by the timeboxes,

and it is dependent upon the continual

feedback of the team itself. Customer

team members provide feedback on pro

totypes. Analysts provide feedback on

the models. An even more evolved RAD

process means continual feedback on the

RAD process itself. This self-examina

tion, pointed out by Todd Wyder at RDI,

involves the ability to "kick back to think

about what you did; stop at regular

points and see what we are doing well,

not so well, and what are we going to do

about it — how can we change that. That

will help the incremental process im

provement all the time."

Even one-hour evaluations every

other week can do much to help the pro

cess evolve, along with the product. RDI

also always conducts a "postpartem"

check for everyone else in the firm to

learn from the project. All evaluation

sessions are recorded in Lotus Notes

from which everyone in the firm can re

view and learn. RAD uses tools and

techniques that are platform-indepen

dent. It requires striking a delicate bal

ance between the hacking associated

with the PC development environment

and the analysis paralysis typically asso

ciated with waterfall methods.

In addition to using such tech

niques as timeboxing, chunking, cus

tomer-driven product delivery and high

performance teams with high perfor

mance tools, RAD is based on the

premise that software development is a

discovery process. Efficient discovery

is complex. It involves risk and uncer

tainty mitigated by team flexibility and

willing communication. ■

References:

Bayer, S. and /. Highsmit. "Radical Software

Development," American Programmer, /one

1994.

Dixon, R. Winning with CASE. New York: Me-

Craw-Hill, 1992.

Holm.m, I. D. and I.F. Rockart. "Application

Templates: Faster, Better, and Cheaper Sys

tems," Sloan Management Review, Fall, 1994.

lacobson, I. Object-Oriented Software Engi

neering: A Use Case Driven Approach. Read

ing, Mass.: Addison-Wesley, 1992.

tones, C. Assessment and Control of Software

Risks. Englewood Cliffs, N.I., Prentice-Hall

1994.

Kerr, I. M. and R. Hunter. Inside RAD. New

York City: McGraw-Hill, 1994.

Martin, lames. Rapid Application Development.

New York City: Macmillan, 1991.

Zahniser, Rich, "Timeboxing for Top Team Per

formance," Software Development, March,

1994.

Application Development Trends ■ AUGUST 1995

