You Know When It's Not There:
How Trust Enables and Enhances Collaboration

by Ellen Gottesdiener

Great products are built by teams that collaborate in
a healthy and transparent manner, and trust is a key
ingredient of effective collaboration.

On a software project, trust is needed between business
and technical people. Businesspeople must trust techni-
cal staff with their time and money to build the right
thing as quickly and cost effectively as possible. Tech-
nical staff need to trust customers to define their needs,
renegotiate agreements when needs change, and inter-
act throughout the project. Sponsors must trust product
“owners” on the team to represent the business and
user needs. Developers have to trust analysts to get the
right requirements as quickly and clearly as possible.
Testers have to trust developers to provide clean-
enough code to begin system or integration testing.
Project leads must trust team members to keep their
word on delivery commitments — and so on.

The good news is that trust isn’t “a feeling” that “just
happens.” Rather, it is the result of specific actions team
leaders can take in a systematic way. Here I explore
practical techniques that help you build and sustain
trust on your teams.

WHAT IS TRUST?

It seems almost silly to define a word as simple as trust,
but like a lot of basic concepts, it gains clarity and depth
as you think it through. Trust is about a relationship in
which people rely on each other. Trust implies an inter-
personal dynamic — in other words, your belief that
the trusted person will look out for your best interests
in a specific area. You have faith that the trusted party
is honest and sincere, will fulfill his commitments, and
will act in a way that’s congruent with his words.

Congruence is a crucial element. If a business partner
tells me she will keep me informed about changing
requirements but later insists on changes I never knew
about, this is not congruent behavior. If the team archi-
tect says in a planning meeting that he will present a
demonstration of a portion of the application in two

CUTTER IT JOURNAL August 2007

weeks but then shows different software without inform-
ing me of the change, there is no consistency between his
words and his actions. I am likely to deem both people
untrustworthy.

You know trust. You know when it’s not there.

THE HIGH PRICE OF LOW TRUST

Lack of trust is harmful to teams, organizations, and
the bottom line. Low trust levels result in project churn,
team turnover, low morale, and unhappy customers.
Evidence of low trust can be found in hidden agendas,
rumors, gossip, whining, and “subversive” stakeholder
behavior.

In studying failed projects, Johann Rost explored the
darker side of failure and found patterns of subversive
behavior by team members [12]. These behaviors
included lying, withholding or delaying access to infor-
mation, providing misleading or vague answers, and
supplying poisoning ideas. Such subversive behavior
can be attributed to personal goals conflicting with
organizational goals, power plays, attempts at retribu-
tion, rivalry, and more. The bottom line is that these
projects suffered from lack of trust.

THREE TYPES OF TRUST

Organization development experts Dennis and Michelle
Reina identified three types of trust that are important
in organizations [11]:

1. Contractual trust
2. Communication trust
3. Competence trust

With contractual trust, the entire team consistently
understands goals, and everyone shares a common
understanding of roles and responsibilities. Boundaries
are clear. Team members have mutual interests; you
will look out for my best interests, and I will look out
for yours, because we succeed together. If things change,

©2007 Cutter Information LLC



we renegotiate. Individuals fulfill specific responsibili-
ties, but we are jointly responsible in the end.

Communication trust involves honest and frequent com-
munication. Teams engage in truth-telling, and with
good purpose. Team members admit their mistakes,
maintain confidentiality, and seek and provide feed-
back. Their actions are congruent with their words,
and vice versa.

When competence trust exists, team members respect one
another’s ability to fulfill their mutual responsibilities.
Because they succeed together, team members rely on
mutual learning and development and actively seek
each other’s input to achieve objectives. They help

each other. They honor agreements. They respect one
another’s skills and knowledge.

WHEN TO BUILD TRUST

The time to build trust is at the very beginning of a proj-
ect, release, or iteration, when you decide what to build
— the process Frederick Brooks called “the hardest sin-
gle part of building a software system” [1]. This is when
the team charters the work, defines its scope, and begins
to elicit requirements. In my experience, a team'’s ability
to explicitly establish the three types of trust — contrac-
tual, communication, and competence — at the start is
an early predictor of project success.

Product requirements are emergent and dynamic.
Effective requirements — the right requirements deliv-
ered at the right time, developed efficiently — require
intense human interaction. Trust is essential. Trust sets
the stage for effective requirements, and developing
effective requirements builds trust.

HOW TO BUILD TRUST

Now let’s look at key actions you can take to build trust
within your teams.

Define the Product’s Vision and Scope

Although IT may coordinate or facilitate this activity, it
must be business-driven and involve all the project stake-
holders. The high-level product vision statement tells team
members what they need to build, for whom they need
to build it, and how it’s different from what exists today.

The vision statement sets the stage for contractual trust
by establishing shared goals for business and technical
staff. To get this right, you must have the right people
(stakeholders) participate in defining the vision and the
requirements needed to fulfill it.

Get The Cutter Edge free: www.cutter.com

A statement of scope clarifies the “contract” about
what to build, at least for this iteration or release. Clear
boundaries are necessary for contractual trust. Capers
Jones estimates that 80% of projects are at risk for
“scope creep” [7, 8]. Changes to requirements are nor-
mal and useful in many projects, but unconstrained or
uncontrolled change — scope creep — is not healthy.

If the team can’t agree on the product’s vision and
scope, you are not ready to plan and build the product.
The most successful outcome is to cancel the project.

Involve the Stakeholders

Stakeholder involvement is probably the most impor-
tant element of a successful software project. No matter
what method you’re using to develop the product
requirements, this is the point in the project when the
needs and interests of all stakeholders converge. To
build trust, you need to involve product owners, devel-
opers, subject matter experts, business analysts, project
managers, and specialists in testing, QA, auditing, regu-
latory issues, training, sales and marketing, and more.

To elicit requirements, you identify stakeholders and
other sources for requirements information, plan a strat-
egy to involve the stakeholders effectively, and then
collaborate to explore, discover, and acquire sufficient
requirements to begin development. During project
startup, you need to make smart choices about whom

to involve and how to engage them. This practice builds
both contractual and communication trust.

It’s best to use a combination of elicitation techniques,
such as prototyping, facilitated workshops, focus
groups, document analysis, and research-based
approaches (such as surveys and competitive analysis).
Using multiple techniques helps the team build compe-
tence with requirements and taps the competence of
various stakeholders. This approach also improves the
quality of the team’s requirements-related conversations
and documentation, building communication trust.

Start by holding a scoping workshop to identify your
stakeholders based on the product vision. Next, define
the product scope and a stakeholder involvement strat-
egy [5]. Understanding these players, the ways they
will be involved in the project, and the ways you can
tap their expertise touches all three types of trust: con-
tractual, communication, and competence.

A special word to agile teams: in the agile approach,
you typically acquire requirements primarily through
the product owner and then revisit requirements contin-
ually. If you're using this approach, the product owner
may make decisions about priorities for iterations and
releases. Still, you may need to use varying techniques

Vol. 20, No. 8 CUTTER IT JOURNAL


http://www.cutter.com

to access other types of stakeholders to more completely
advise and inform your understanding of requirements.

Keep a Glossary

The glossary defines the meaning of the business terms
in your product domain. These terms are the basis for
all project and product communications and product
requirements. A glossary provides a shared vocabulary
— a fundamental building block of trust as well as the
key to effective requirements. Project teams need to
speak the same language, thereby building competence
and communication trust.

Consider how many times you’ve participated in dis-
cussions in which people were using the same term
differently or using different terms to mean the same
thing. This wastes time and causes conflict and confu-
sion. One shared glossary of business terms, which
evolves throughout the project, should be the single
point of meaning for all stakeholders.

Set Criteria for Prioritizing Requirements

Not all requirements are created equal, and not all
requirements are understood equally well. Teams need
an explicit, agreed-upon method for evaluating and
filtering requirements so that they can make smart, jus-
tifiable choices. This practice both requires and builds
contractual trust.

Some teams rely on ranking schemes, such as “high,
medium, low” or “must, should, could, won’t” (i.e.,
MoSCoW prioritization). In such schemes, the meaning
of the ranking is not explicitly defined. These tech-
niques might be sufficient for lower-risk or simpler
projects, but for larger, more complex projects, a simple
ranking scheme is insufficient. In those cases, you
should clearly and precisely define what each ranking
means in terms of business value.

For example, on one data warehouse project I worked
on, we needed to rank certain data or data groups
according to their priority. In our first requirements
workshop, we defined our “must” ranking: it meant
that if the data or data grouping was not available to
view or report on, the company would be violating an
external regulation (thereby putting the business oper-
ations at risk). We also established definitions for the
other two priority levels. This practice allowed us to
quickly rank specific data during our workshops.

Your prioritization criteria amount to a contract for pri-
oritizing requirements, and they establish boundaries
(and thus contractual trust) for the work that needs to
be completed at a particular point in time. The criteria

CUTTER IT JOURNAL August 2007

also provide a basis for healthy team communication
about competing needs.

Tailor your prioritization criteria to your project. In my
example, the objective was to avoid regulatory violations
and fines. On your project, the criteria might include
losing market share, risking a large amount of money,
increasing operational efficiencies, minimizing or maxi-
mizing organizational impact, achieving a fast return on
an investment, and so on. Obtain agreement among the
business and technical stakeholders before applying the
ranking scheme to your project requirements.

Make Decisions Transparently

Defining prioritization criteria sets the stage for, but

is not a substitute for, explicit decision making. How
many times have you walked out of a meeting unsure
whether a decision had been made? Or heard people
dissing the decision at the water cooler? Or realized that
you disagreed with the decision but had never been
given a chance to voice your opinion? In these kinds of
cases, decision making is opaque.

Transparent decision making is essential for communi-
cation trust. Software projects involve a myriad of deci-
sions, and participatory decisions work [10]. Healthy
teams use a transparent, participatory decision-making
process for high-stakes decisions.

Requirements work is about continually deciding which
requirements will be built to achieve business value.
You must decide what is in scope and what is out of
scope; which requirements you will build for the next
iteration; which user community you are targeting —
that is, which users’ needs will be favored; and how
much training and self-help you will build into the
product. In addition to product requirements, you must
define what the length of iterations or releases will be,
who will do what work, how to engage stakeholders,
what tools to use, and so on.

To make these important decisions, teams need decision
rules and a protocol for decision making. I call such a
collaboration pattern Decide How to Decide [3]. This
pattern provides a repeatable mechanism teams can use
to reach closure by explicitly defining what the decision
rule is and how the team will participate.

I use a checking-in tool called a “gradient of agreement”
that I first learned about from Sam Kaner [9]. With

time and experience, I have modified the gradient and
checking-in process. I demonstrate it in workshops and
encourage teams to use it for all their participatory deci-
sions. When participatory decisions are used and the
decision maker explicitly consults with stakeholders

©2007 Cutter Information LLC



who will implement the decision, you improve both the
sustainability and the quality of your decisions.

Transparent decision making is a powerful way to build
trust early in a project. It builds and sustains all three
types of trust: contractual (you have a contract for
reaching closure), communication (decision making is
explicit and everyone owns the process and outcome),
and competence (decisions are made with input from
knowledgeable stakeholders). This approach also builds
competence in decision makers.

Play Around

Building prototypes and creating multiple interweav-
ing requirements models at the start of each iteration,
release, or requirements phase will increase team compe-
tence and provide for rich communication. In his book
Serious Play, author Michael Schrage reveals the role of
“play” in product innovation [13]. Playing around with
models and prototypes unleashes ideas, confirms needs,
and feeds successive revisions of products, enhancing
both competence in the domain and communication
among business and technical stakeholders.

Work the Wall

In this technique, you post the team’s work — plans,
charts, requirements and design diagrams, test status,
and more. It’s about making the team’s work trans-
parent and visible. Alistair Cockburn refers to wall
work as “information radiators” [2], and Ron Jeffries
discusses the use of big visible charts [6].

Wall work ensures that communication is open and
visible, thus building communication trust. It also
allows team members to learn about the work of others,
building competence trust.

No More Meetings

Typical meetings are a waste of time, money, and energy.
They are poorly planned (f at all) and inadequately mon-
itored, have vague goals, do not reach closure, and might
even have the wrong attendees.

Meetings like these are true trust-busters. They violate
all three types of trust: contractual (the purpose is
unclear), communication (the meeting processes are
ineffective), and competence (the needed participants
aren’t there, and communication is one-way and results
in little mutual reliance and learning).

My advice? Don’t have typical meetings. Instead, build
trust by communicating in these ways:

Get The Cutter Edge free: www.cutter.com

= Daily stand-ups (e.g., daily Scrums) to obtain status,
make work commitments, and uncover potential
obstacles

= Demos or prototypes to share and get feedback on a
slice of product functionality

= Reviews or inspections to detect errors or defects in
a work product

= Facilitated workshops to produce work products such
as plans, requirements, designs, and retrospective
findings (see sidebar on page 10)

These types of group sessions have three things in
common:

1. Protocols for team interaction, which serve as a
contract for the process and the outcome

2. Process guidance (via a facilitator, moderator, proj-
ect leader, or ScrumMaster) to ensure healthy
communication

3. Prework for strong contracting and for building team
competence (except in the case of daily stand-ups,
which do not require prework)

These elements exploit the positive power of group
work and provide a framework for attaining the glori-
ous group situation in which, as Aristotle said, “The
whole is more than the sum of its parts; the part is more
than a fraction of the whole.”

Hold Retrospectives

Retrospectives are about team self-reflection on product
and process for a predefined time frame (such as an
iteration, a release, a milestone, or a project). The team
inspects real project data and engages in thorough
reflection in order to learn and adapt.

Retrospectives are a powerful mechanism for kick-
starting and sustaining trust. Indeed, as agile teams
know, the retrospective ritual is integral to the agile
process. You are not “doing agile” unless you're doing
retrospectives at the end of each iteration.

Retrospectives facilitate transparent communication and
joint accountability (which is part of contractual trust).
These sessions also enable and build individual and
team competence.

THE TIME IS NOW

For many project teams, the hardest part of software is
the soft stuff. They struggle because they lack an essen-
tial element of healthy collaboration: trust. Leaders of
successful teams know that they need to build three

Vol. 20, No. 8 CUTTER IT JOURNAL


http://www.cutter.com

types of trust: contractual trust, communication trust,
and competence trust.

What can you do today to build and sustain trust on
your team?

BUILDING TRUST THROUGH FACILITATED WORKSHOPS

With facilitated workshops, | contract for the event beforehand
using a planning team to balance the needs of all stakeholders

[4]. To guide the planning, the team and | follow a planning and

design framework called “The 6 Ps":

1. Purpose

2. Participants
3. Principles
4. Products
5. Place

6

. Process

In this way, we build contractual and communication trust
before people get together in the same room at the same time.

When you plan a workshop, seek ways to build trust. For example,

to ensure transparent communication, actively try to identify hid-
den agendas people may have. Additionally, delineate the deci-
sions and the decision-making process you'll use in the workshop.

During the workshop, the facilitator helps the team adhere to

the ground rules and stay focused on the workshop's purpose.
Through a well-planned process, the facilitator helps the team
become competent in the requirements, design, plan, or other
work products.

You also build trust in workshops by letting conflict surface.
Conflict is normal when humans interact and should be viewed
as supplying energy and opportunities. Pushing down or
ignoring conflict or disagreements promotes distrust. Group
competence grows when you explicitly address conflicts. At
the same time, the group learns to deal with conflicts, such as
competing priorities, in an appropriate manner.

After a workshop, you need to ensure continuity in communic-

ation and competence for nonparticipating stakeholders. You do
this by sharing outcomes. | recommend conducting a show-and-

tell to allow sponsors and key stakeholders to learn from the

team, thus increasing management competence. The show-and-

tell also builds transparent communication up and down; it
builds trust with senior management. If the group’s work is on
the wall, it is transparent as well.

Note: If you cannot hold these gatherings at the same time in

the same place because members are physically distributed, you

should define and agree to special protocols for these types
of gatherings.

CUTTER IT JOURNAL August 2007

REFERENCES

1. Brooks, Frederick P. “No Silver Bullet: Essence and Accidents
of Software Engineering.” In Proceedings of the IFIP Tenth World
Computing Conference, IFIP, 1986, pp. 1069-1076.

2. Cockburn, Alistair. Agile Software Development. Addison-
Wesley Professional, 2002.

3. Gottesdiener, Ellen. “Decide How to Decide.” Software
Development, Vol. 9, No. 1, January 2001, pp. 65-70 (http://
ebgconsulting.com/articles.php#people).

4. Gottesdiener, Ellen. Requirements by Collaboration: Workshops
for Defining Needs. Addison-Wesley Professional, 2002.

5. Gottesdiener, Ellen. The Software Requirements Memory Jogger:
A Pocket Guide to Help Software and Business Teams Develop and
Manage Requirements. GOAL/QPC, 2005.

6. Jeffries, Ron. “Big Visible Charts.” Xprogramming.com,
20 October 2004 (www.xprogramming.com/xpmag/
BigVisibleCharts.htm).

7. Jones, Capers. Patterns of Software Systems Failure and Success.
International Thomson Computer Press, 1995.

8. Jones, Capers. “Strategies for Managing Requirements
Creep.” IEEE Computer, Vol. 29, No. 6, June 1996, pp. 92-94.

9. Kaner, Sam. “Participatory Decision-Making: Tools for
Reaching Closure.” Tutorial Proceedings, International
Association of Facilitators, Tulsa, Oklahoma, USA, January 1997.

10. Nutt, Paul C. “Leverage, Resistance and Success of
Implementation Approaches.” Journal of Management Studies,
Vol. 35, No. 2, March 1998.

11. Reina, Dennis S., and Michelle L. Reina. Trust and Betrayal in
the Workplace: Building Effective Relationships in Your Organization.
2nd ed. Berrett-Koehler, 2006.

12. Rost, Johann. “Political Reasons for Failed Software Projects.”
IEEE Software, Vol. 21, No. 6, November/December 2004,
pp. 104, 102-103.

13. Schrage, Michael D. Serious Play: How the World’s Best
Companies Simulate to Innovate. Harvard Business School Press,
1999.

Ellen Gottesdiener, Principal Consultant of EBG Consulting, helps
teams to collaboratively explore requirements, shape their development
processes, and plan and review their work. Her book Requirements
by Collaboration: Workshops for Defining Needs describes how to
use multiple models to elicit requirements in collaborative workshops.
Ms. Gottesdiener helps agile teams to define their product and release
roadmaps and elicit just enough requirements to achieve iteration and
product goals. Her most recent book, The Software Requirements
Memory Jogger: A Pocket Guide to Help Software and Business
Teams Develop and Manage Requirements, is becoming the

go-to industry guide for requirements good practices for business
owners and analysts. She is a Certified Professional Facilitator

(CPF) and a member of IEEE, IIBA, IAF, ACM, and DAMA.

Ms. Gottesdiener can be reached at EBG Consulting, Inc., 1424
Ironwood Drive West, Carmel, IN 46033-8722, USA; Tel: +1 317
844 3747; Fax: +1 317 844 7374; E-mail: ellen@ebgconsulting.com;
Web site: www.ebgconsulting.com.

©2007 Cutter Information LLC





