
Top Ten Ways Project Teams Misuse Use Cases -
- and How to Correct Them

Part I: Content and Style Issues

by Ellen Gottesdiener
 Principal

EBG Consulting

Use cases are a wonderful and powerful way to define the
behavioral requirements of your software. They have
evolved in style and form over the past decade and are now
used to define user requirements by many requirements
analysts, developers, and business experts involved in
software projects -- both object-oriented and otherwise.
But if you don't fully understand the ins and outs of use
cases, it's easy to misuse them or make mistakes that can
unintentionally turn them into "abuse cases."

In my work on software projects, I've facilitated numerous
requirements workshops and have probably encountered
every kind of error people can make in writing use cases. In
this two-part series, I will present a view of how use cases
can go awry and discuss ways to prevent this from
happening. In this first article, we'll begin by defining use
cases and their purpose and then identify ten "misguided
guidelines" project teams often apply when they actually
create use cases. And finally, we'll take a closer look at the
first six of those "guidelines" -- which relate to the content
and style of use cases -- and explore ways to correct them.
Next month, Part II will address the last four misguided
guidelines: the most common mistakes teams make when
modeling use cases.

What Use Is a Use Case, Anyway?

A use case is a textual or diagrammatic (or both)
description of both the major functions that the system will perform for
external Actors, and also the goals that the system achieves for those
Actors along the way. Use cases can be represented with text, a diagram
or through both formats. Use-case text can contain different pieces of
information, but at a minimum it will include names and a basic course of

jprince
http://www.therationaledge.com/content/jun_02/t_misuseUseCases_eg.jsp

jprince
Copyright Rational Software 2002

action. Exception conditions and variation paths are also included in
detailed use-case descriptions.

Scenarios describe typical uses of the system as narratives or stories;
each narrative can be a few sentences or paragraphs. Scenarios are
"played out" in the context of a path through a use case. You can think of
a use case as an abstraction of a set of related scenarios.

Ten Misguided Guidelines Teams Follow for Use
Cases

Now that we've seen what an ideal use case is supposed to be and do,
let's see what happens when people actually try to create use cases.
Below is my lighthearted translation of the "misguided guidelines" I've
observed people following during my years as a project participant and
consultant.

1. Don't bother with any other requirements representations.
(Use cases are the only requirements model you'll need!)

2. Stump readers about the goal of your use case.
(Name use cases obtusely using vague verbs such as do or process.
If you can stump readers about the goal of a use case, then
whatever you implement will be fine!)

3. Be ambiguous about the scope of your use cases.
(There will be scope creep anyway, so you can refactor your use
cases later. Your users will keep changing their minds, so why
bother nailing things down?)

4. Include nonfunctional requirements and user interface details in
your use-case text.
(Not only will this give you a chance to sharpen your technical skills,
but also it will make end users dependent on you to explain how
things "really work.")

5. Use lots of extends and includes in your initial use-case diagrams.
(This allows you to decompose use cases into itty bitty units of
work. After all, these are part of the UML use-case notation, so
aren't you supposed to use them?)

6. Don't be concerned with defining business rules.
(Even if they come up as you elicit and analyze use cases, you'll
probably remember some of them when you design and code. If
you must, throw a few business rules into the use case text. You
can always make up the rest when you code and test.)

7. Don't involve subject matter experts in creating, reviewing, or
verifying use cases.
(They'll only raise questions!)

8. If you involve users at all in use case definition, just "do it."
(Why bother to prepare for meetings with the users? It just creates
a bunch of paperwork, and they keep changing their minds all the
time, anyway.)

9. Write your first and only use case draft in excruciating detail.
(Why bother iterating with end users when they don't even know
what they want, and they only want you to show them meaty stuff,
anyway!)

10. Don't validate or verify your use cases.
(That will only cause you to make revisions and do more rework,
and it will give you change control problems during requirements
gathering. So forget about it!)

If you recognize yourself in any of these "guidelines," take heart. The
reason I know them so well is that I've made most of these mistakes
myself. Pausing to examine your own mistakes is a wonderful way to
learn, so now I'll share some of my experiences with use cases.

Correcting Misguided Content and Style Guidelines

As I've noted, the first six misguided guidelines relate to content and style
issues, which we'll examine in this article, starting with:

1. Don't Bother with Any Other Requirements
Representations

Because use cases are powerful and familiar software engineering tools,
many teams mistakenly believe they can employ use cases alone to define
user requirements.1 But experience shows that use cases are often
insufficient and in some cases inappropriate for this purpose.

Why? From the point of view of a person or system interacting with your
software, a use case nicely describes an aspect of its behavior. But no
single user requirements model can fully express all of the software's
functional requirements: its behavior, structure, dynamics, and control
mechanisms. Figure 1 illustrates how these requirements translate into
four interrelated views.

Figure 1: Four Views of System Requirements. Employ use cases to define software

behavior but other models to describe user requirements.

These views provide complementary mechanisms for analyzing your
business domain and modeling it accurately and completely. Suppose, for
example, that you're creating a product-ordering application. If you want
to represent this domain in terms of use cases, then you might propose a
use case such as "Place Order" to capture the flow of the ordering process.
This use case might adequately describe this behavior of your system, but
it would miss related structural, dynamic, and control elements. The
structural view deals with attributes of the order, the order placer, and the
customer. The control view encompasses rules for order placement,
invoicing, billing, and back ordering. In describing the dynamics of placing
an order, you might want to specify the allowable states of the order and
actions that occur within those states.

In short, using multiple views gives you a richer context for eliciting user
requirements. It also aligns with an important principle of requirements
engineering: separation of concerns. Each model describes a specific
aspect of your software and omits extraneous information. This means, for
example, that your use cases don't include details found in other models,
such as data attributes and business rules. Instead, these related models --
whether defined with a diagram or text -- should be traced to your use
cases.

One project I worked on impressed me with how important it is to
separate concerns. In our initial draft, we wove business rules into the use-
case text, along with occasional lists of data attributes. But knowing that
this information was sprinkled across multiple use cases, we removed it to
other models. We made a list of the business rules in English, and we
created a visual domain model that contained a logical data model and an
analysis class model. We expected that the requirements would change as
we worked and wanted the ability to quickly assess the impact of those
changes. The changes rippled beyond a single model, so we used our
requirements management tool (Rational® RequisitePro®) to associate
the models with each other.

As our users explored their requirements and details evolved, we easily
managed the changes. We collected business rules, the data, and the
analysis class model at the same time, yet separately, from the use cases.
We deftly bounced between models in a requirements workshop, and
ultimately we reached closure faster than we would have if we had left the
use-case text loaded up with lots of information.

Another project team I worked with learned why relying solely on use
cases is problematic. The team was using facilitated workshops to
determine requirements for a financial project. The goal was to support
plant managers in querying information using a variety of reporting and
query rollups of summary data. To model the system, the team planners
wanted to create and verify use cases and actors as their primary
deliverables. But after careful analysis, we realized that use cases weren't
a useful way to express the problem domain. For this purpose, a single
use case such as "Query Plant Information" would be far too abstract and
all-inclusive. So instead, we used a structural view (data model) and a
control view (business rules) to define user requirements. We elicited

these models by starting with scenarios in the form of situations and
questions that plant managers would need to ask. For that particular
project, and for similar data querying systems, use cases would be
minimally useful.

In general, it's best to let the business problem domain drive the selection
of the best requirements models for representing functional needs. Table 1
provides examples of some business domains and appropriate
requirements models. Often, you can create simplified versions of what
might otherwise be complex models, such as statecharts and data models,
in collaboration with business experts or users during a workshop.

Table 1: Example Business Domains and Appropriate Requirements Models

Business Domain Primary View
(see Figure 1)

Suggested Models

Operations, Administration,
Inventory Management,
Billing, and Ordering

Behavior Use Cases, Scenarios,
Actor Table and Maps,
Domain Models, Event
Table, Prototypes

Data Query and Analysis, Data
Extraction, Ad hoc and
Standard Reporting, Customer
Reporting

Structure Data Model, Scenarios,
Business Rules

Workflow, Logistics, Demand
Management, Contract
Negotiation, and Procurement

Dynamics Process Maps, Event
Table, Statechart,
Prototypes, Scenarios

Claim Adjudication, Welfare
Eligibility, Mortgage Lending,
Clinical Diagnosis

Control Business Rules,
Statecharts, Scenarios,
Event Table

Use cases are especially appropriate for highly interactive (behavioral)
systems involving end users. Embedded systems, intensively algorithmic
systems, data access, and batch systems might start with use cases such
as "Provision Line Card," "Compute Dividend," "Query Information," or
"Refresh Application Files." However, these types of systems won't benefit
from the writing of detailed use case text. Other requirements
representations, such as functional hierarchies or precise specifications like
Gilb's Planguage,2 are more effective.

Overcoming single-model-itis (the temptation to use use cases alone) will
increase the quality of your requirements, reduce rework, and save you
time and money. It will also speed requirements development and uncover
requirements defects. On one project, we laid out use-case steps on a
wall,3 listed business rules below the steps, and listed data attributes
nearby on sticky notes. As we discussed use-case steps, we found missing
business rules and attributes. Each was separately documented yet traced
to the other steps. The result? The project experienced no defects
resulting from requirements errors, which gave strong endorsement to our
approach.

2. Stump Readers About the Goal of Your Use Case

To paraphrase Alistair Cockburn, the purpose of a use case is to fulfill an
Actor's goal in interacting with the system.4 As you review your list of use
cases, be sure that the goal and the Actor (the person or thing that has
the goal) are clear.

"Process Order" or "Do Inventory" are vague use-case names, leaving a
lot of room for interpretation. What is the goal of "Process Order"? Is it to
authorize the order? Find available products? Pack and ship the order?
Some combination of these? A single use case can't describe all the
actions that name might encompass.

The best way to generate use-case names is either by starting with Actors
or by listing use cases and then immediately naming each use case's
Initiating Actor. Well-named use cases often enable a business customer
to easily infer who the Actor is. An unclear name, in contrast, provides few
clues. What Actor initiates the use case named "Process Order," for
example? An order taker? An inventory replenisher? A shipper?

The following guidelines will help you avoid this naming problem.

● Name your use cases using this format: verb + [qualified] object.

● Use active (not passive) verbs.

● Avoid vague verbs such as do or process.

● Avoid low-level, database-oriented verbs such as create, read,
update, delete (known collectively by the acronym CRUD), get, or
insert.

● The "object" part of the use-case name can be a noun (such as
inventory) or a qualified noun (such as in-stock inventory).

● Make sure that the project Glossary defines each object in the use-
case name.

● Add each object to the domain model (as a class, entity, or
attribute).

● Elicit Actors and use case concurrently, associating one with the
other as you name each.

One project I know of had sixty-eight use cases because team members
created a use case for each database event. But it doesn't make sense to
describe database events this way. Use cases are designed to model Actor
interactions with your software. Human Actors don't interact with the
system in order to CRUD rows in their databases. They don't think in
terms of rows and databases; they may not know what a database looks
like internally, nor should they have to know that. Rather, Actors think in
terms of higher-level goals, such as finding out the discount to give a
particular customer; and these goals, in turn, serve business objectives.

Although goals (use cases) can be related, don't make the mistake of
blending them together. For example, the use cases "Place Order,"

"Replenish Stock," "Locate Distributors," and "Ship Order" are related, but
each is a distinct use case. If you understand their interdependencies,5
then it will be easier to prioritize them and to plan increments with
customers. It will also give you built-in flexibility if you need to trim
functionality for a given release. But don't make the mistake of thinking of
these cases as one big use case.

To help project teams create good use-case names in requirements
workshops, I give participants a "cheat sheet" of good verbs to use (see
Table 2). I divide the list into informative use cases (those that give
information to the Actor) and performative use cases (those that execute
a business transaction to deliver value to the customer or that change the
state of data in the system).

Table 2: Example Verbs to Use in Use-Case Names

Informative Use Cases Performative Use Cases

Analyze
Discover
Find
Identify
Inform
Monitor
Notify
Query
Request
Search
Select
State
View

Achieve
Allow
Arrange
Change
Classify
Define
Deliver
Design
Ensure
Establish
Evaluate
Issue
Make
Perform
Provide
Replenish
Request
Set up
Specify

This list can help you to arrive efficiently at a first-cut list of use cases
without having to clarify their meaning. In one requirements workshop in
which use cases were our primary deliverable, I started with a one-minute
definition of the term "use case." Next, I handed out the cheat sheet, and
together we named several use cases for the project. Then, while the
developers and analyst watched, the three business experts present were
able to generate more than fifty use-case names for three related
subsystems -- in only twelve minutes! We spent another ten minutes or so
clarifying, collapsing, and adding use cases to arrive at a first cut list of
about fourteen use cases per subsystem. The participants went on to
practice writing a one-paragraph description of a sample use case, and
from there we iterated through the process of detailing each use case,
mapping out dependencies, and packaging the use cases for prioritization
and release planning.

3. Be Ambiguous About the Scope of Your Use Cases

Use-case scope mistakes are typically of two sorts: Either the use case
does not address a single Actor goal, or the use case does not fall within
your project's scope and should never have been detailed in the first
place. Both types of mistakes waste a lot of time and energy. If you don't
scope your use cases appropriately, then development becomes
unnecessarily complex, and iterative and incremental development
becomes a major chore. If you don't frame each use case clearly, then it's
hard to know when a use case starts and ends.

To avoid confusion, remove out-of-scope use cases by naming them well
(see the preceding section) and ensuring each belongs in the system's
scope. Several other models can help, including the context diagram and
event table. All surviving use cases should be checked to ensure that each
addresses one or more of the business goals defined in your Vision or
Charter.

To keep a single use case in scope -- and thereby address only one Actor
goal -- constrain each use case with its triggering event and necessary
event response. Events are what cause Actors to initiate use cases. When
the event response is achieved, the use case is finished.

Events for scoping use cases come in two flavors: business and temporal.
Business events are high-level occurrences that happen at unpredictable
times. Although you can estimate, for example, how many book requests
or product searches might occur, you can't specifically say when they will
occur or how often.

Assign names to business events using a "subject + verb + object"
format: for example, "customer requests book." In this example, one
event response might be that book information is provided to the
customer. As you might guess, the subject part of the business event
turns out to be an Initiating Actor, and the verb part gives you clues for
naming one or more use cases.

Temporal events, on the other hand, are entirely predictable occurrences,
driven by a specific time on the clock. You know exactly (i.e., the month,
day, year, hour, or minute) when the use case needs to replenish
inventory levels, publish the schedule, post bills, or produce 1099s.
Temporal events are driven by the clock and should be named using the
format "time to <verb + object>." The initiating actor for these temporal
events will be "Clock" or a psuedo actor name you choose such as
Inventory Controller or Scheduler Manager. Event responses to temporal
events can be what McMenamin and Palmer6 call "custodial" -- for
example, cleaning up data inside the system by refreshing information --
and they can generate tangible artifacts to actors, as business events
often do.

It's useful to define events and their responses in your use-case template -
- a standard format for documenting use cases. Templates usually are
headed by high-level information about the use case. A business or
temporal event is not itself a use case; rather, it corresponds to the
"trigger" in most use-case templates, and the event response corresponds

to the "success outcome" in your use-case header.

Defining events can also help you eliminate use cases that don't belong in
your project's scope. Let's look at a few ways.

● Events can be your starting point in defining requirements. In fact,
an event name is very similar to a use-case name, simplifying the
transition from scope to use cases (see Figure 2). To add vigor to
your scoping activity, it's a good plan to use a context diagram or
context-level use case to describe events and event responses.

● Drawing a context diagram while simultaneously naming business
and temporal events allows everyone to "see" the system's scope.
On the context diagram, business events are in-flows to the central
bubble (or oval), and event responses are shown as out-flows (the
system's response to the external environment). Temporal events
can be out-flows, and sometimes also in-flows, when the temporal
event requires feeds from external Actors.

● In an hour or less, you can create an event table (a table with one
column for events and another for the corresponding event
responses) along with a context diagram. It's an hour well spent,
because it helps you avoid specifying use cases that don't belong.

● If your team is eager to jump into naming use cases, consider
taking a brief detour to the event table and context diagram. By
taking five to fifteen minutes to refresh everyone on the project's
scope, you will likely uncover missing events or extraneous use
cases, saving significant rework later on.

Figure 2: Events Can Help You Frame Use Cases Precisely

4. Include Nonfunctional Requirements and User Interface
Details in Your Use-Case Text

A common mistake teams make with use cases is to incorporate
nonfunctional requirements, such as response times and throughput
information, and user interface or prototype details such as widget
manipulation and references to windows, buttons, and icons. Although use
cases are effective tools for eliciting nonfunctional requirements and for
envisioning the user interface, you shouldn't insert that information into
your use-case text; instead, you should associate that information to the
relevant use cases. For example, you can define nonfunctional
requirements in a nonfunctional requirements specification or
supplementary specification document that traces each nonfunctional
requirement to its corresponding use case. The prototype sketches,
drawings, or screens should be also stored separately, and traced to the
use cases they envision.

Nonfunctional requirements include quality attributes (such as
performance, throughput, and usability), system requirements (such as
security and recoverability), and system constraints (such as database and
language). These nonfunctional requirements drive architectural decisions,
govern user satisfaction with your final product, and provide competitive
advantage in commercial software products.

User quality attributes constrain functional requirements. Use cases, and
any other user requirements model describing software functionality,
portray the "doing" part of requirements. Their associated nonfunctional
requirements describe the "being" part of software. You should strive to
separate the doing from the being but also relate the two.

As you begin to specify the functionality needed to achieve a use case, you
can uncover some of your nonfunctional requirements, such as response
time, throughput, and usability. To do that, ask good questions of users --
or surrogate (stand-in) users -- while eliciting use cases:

● How many users does this Actor represent?

● What is the maximum response time acceptable for <use case>?

● How many <object part of use case> will you need to <verb part of
use case name> each day, hour, or week?

● Are there periods in the year when you will see higher volume?

● Will experienced and new users need to learn to use this
functionality differently?

The answers will help you begin to nail down the nonfunctional
requirements for your use case.

Other nonfunctional requirements -- such as backup, recovery, security,
and audits -- relate to multiple use cases. Often you need define them
only once, and they don't belong in your use-case text. Separating them
will help your project architects get a comprehensive overview of the
technical issues that will drive important design considerations.

Prototypes describe requirements as viewed by direct users, or actors.

Before you code anything, try eliciting and testing use cases by using
simple screen navigation maps or mockup dialogs posted in sequence on a
wall. These low-fidelity prototypes also help you manage user and
customer expectations about the system's look and feel without locking
anyone into specific interface designs.

Though it's tempting to incorporate GUI references into use-case text, you
shouldn't fall into this trap. It creates design expectations that may prove
erroneous or unworkable as you iterate through Elaboration and
Construction. In one project I know of, the team had to rework their use-
case text when they embedded specific GUI references to an environment
(Java Swing) that changed (to XLS) shortly after they had drafted their
use case. The use-case text should apply regardless of implementation
environment.

In sum, let your use cases do what use cases do well: describe Actor-
system interactions. To describe constraints and quality attributes for
those interactions, define and trace nonfunctional requirements apart from
your use cases. To describe how the software will look and feel, use a
prototype.

5. Use Lots of Extends and Includes in Your Initial Use-Case
Diagrams

Extensions and includes are among the most confusing aspects of the use-
case diagram. Overzealous attempts to use the notation -- just because
it's there -- can lead to analysis paralysis.

In practice, <<include>> use cases aren't revealed until the second or
third iteration through all the use cases. On one project I facilitated, we
iterated first through all the "Happy Paths" (normal scenarios in which all
goes well) and then all the "Unhappy Paths" (assuming errors, exceptions,
and infrequently occurring scenarios) over the course of several days. The
number of use cases expanded and contracted as we explored the breadth
and depth of the project. We began with fifteen use cases, went down to
fourteen, and finally settled with twelve. Included use cases became
apparent as we iterated through the set, finding patterns of behavior that
could be partitioned out and reused by multiple use cases. Jumping to
<>> use cases too soon leads to the trap of a functional decomposition
mindset, eradicating the advantages that Actor- and goal-driven use cases
provide.

Extensions inside use-case text add complexity because they often
address important errors or exception conditions -- in other words,
business rule violations. Occasionally, a set of steps that handles similar
extensions turns out to be an included use case. To save time in
identifying these patterns, you should define business rules explicitly.

Although the use-case diagram with includes and extensions semantics
might be useful for certain complex use cases, it is more productive to
spend your time specifying use-case text, visualizing relationships within
and between use cases, and using multiple requirements models (sound
familiar?). To more easily visualize each use case, ask users to lay out

each step on a wall and then step through the use case. At each step, ask
them questions designed to uncover attributes, business rules, and
elements that might appear on a user prototype.

6. Don't Be Concerned with Defining Business Rules.

This guideline is based on a serious misconception: Business rules should
be at the heart of your use cases, providing the controls, reasoning,
guidance, and decisions behind the processes the use case describes.
Business rules exist to enforce higher-level business policies, which in turn
serve business goals, objectives, and tactics. If you don't explicitly define
and separate your business rules, they will almost surely end up wrong,
missing, or difficult to change. Many post-implementation defects relate to
problems with business rules.

Business rules are owned and known (or need to be known) by business
experts and/or the product and marketing managers who represent them.
Technical people have no business trying to guess at business rules unless
they are well versed in the business and are authorized to define the rules.

For this reason, early in requirements efforts, I request that a business
executive or expert assume the role of project "Rule Czar." This means
taking responsibility for defining the rules and noting where they apply. As
you elicit use cases, many questions will arise about business rules, and
the Rule Czar's job is to help the group reach closure on such questions.

To find out whether business rules are lurking below the surface of your
use cases, listen and look for certain verb clues in the text you have
written:

● evaluate

● determine

● assess

● verify

● validate

● classify

● decide

● compare

● diagnose

● match

● conclude

● should (as part of verb phrase)

Once you hear these verbs, ask probing questions of your users or
customers to uncover the business rules that must be enforced to take the
action the verb suggests (e.g., verify, decide, etc.) in the use-case
description.

To help you specify business rules precisely, you can use business rule
templates, which give you a structured format for writing business rules in
natural language. This will help you tease loosely written business rules
into atomic business rules. And as you do so, you'll find missing elements
from other models, such as the domain model and use-case steps.

There is no agreed-upon taxonomy for business rules, nor does there need
to be. Table 3 shows some examples. Each project is unique, so you must
select or invent a template that works best for your domain. Be sure to
define each term in your business rules in your Glossary. Terms are the
building blocks of all your business rules and are used throughout your use
cases, so you should nail down their meanings as soon as you can.

Table 3: Sample Business Rules Templates

Category Templates Examples

Term
(list in Glossary)

[property] <noun/business
term> is defined as <text
definition>

A manager is defined
as a person to whom
two or more people
report directly.

Fact Each <noun/business term>
must|may <verb or verb
phrase> one and only
one|one or more
<noun/business term>
[<prepositional phrase>]

<noun/business term1>
may|must <verb or verb
phrase> <noun/business
term2>

<noun/business term1> has
a property of <noun/business
term2>

Each buyer must
assign one and only
one discount to an
order.

Line items must
contain the quantity
requested.

"Web customers" has
a property of "userid."

Constraint <[qualified] noun/business
term> must be true for
<condition>
or <condition [property]
<noun/business term> must
not/cannot <verb phrase>
<constant or non-verb
phrase>

The active ingredient
for a finished product
must be listed first on
the package.

Total-sale must not
exceed $100.

An underage
customer cannot
purchase alcoholic
beverages from liquor
stores.

Derivation <noun/business term> is
calculated as <arithmetic
expression>

Total excess material
is calculated as (total
volume input minus
total amount used).

Action Enabler
(also known as
ECA rules: event,
condition, action)

when <condition is true>,
then <action>

if <condition1>
[and <condition2>...]
then <action>

When claim arrives
after cancellation
date, then issue
rejection letter.

If preferred customer
and backordered
item, then offer 10
percent discount.

Inference If <condition1 [true]>
[and condition2...]
then <conclusion>

If customer submitted
expired credit card,
then credit is
suspicious.

Be sure to separate business rules from your use cases but still relate
them. On one project we included business rules in our use cases from the
start, and by the second iteration we found ourselves diving into multiple
use cases to change and add business rules. We corrected course by
deleting the business rules from the use-case text and turning them into a
distinct requirements artifact; then we traced use cases to business rules
and vice versa, using traceability matrices. This taught me a valuable
lesson: Agility is facilitated not only by simplicity but also by separation.

Write your use case with no business rules embedded in the text, but
reference them in a separate document and trace them to the use case
that must enforce them.

Until Next Time

In this article we've come a bit more than halfway through the list of
misguided guidelines. Next month we'll look at the last four, which are
pitfalls to watch for in the process itself. Until then, remember that
although use-case mistakes are common, it is worth the effort to correct
them. Use cases can really work for you if you don't misuse them!

Acknowledgments

I would like to thank the following reviewers for their helpful comments
and suggestions: Alistair Cockburn, Gary Evans, Susan Lilly, Bill Nazzaro,
Paul Reed, Debra Schratz, Karl Wiegers, and Rebecca Wirfs-Brock.

References

Alistair Cockburn, "Use Cases, Ten Years Later." Software Testing and
Quality Engineering Magazine (STQE), Vol. 4, No.2, March/April 2002, pp.
37-40.

Alistair Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.

Alistair Cockburn, "Using Goal-Based Use Cases." Journal of Object-
Oriented Programming, November/December 1997, pp. 56-62.

Martin Fowler, "Use and Abuse Cases." Distributed Computing, April 1998.

Tom Gilb, Competitive Engineering: A Handbook for Systems and Software
Engineering Management Using Planguage. Addison-Wesley (forthcoming,
2002).

Ellen Gottesdiener, Requirements by Collaboration: Workshops for
Defining Needs. Addison-Wesley, 2002.

Ellen Gottesdiener, "Collaborate for Quality: Using Collaborative
Workshops to Determine Requirements." Software Testing and Quality
Engineering, March/April 2001, Vol 3, No. 2.

Ellen. Gottesdiener, Requirements Modeling with Use Cases and Business
Rules (course materials, EBG Consulting, Inc.), 2002.

Daryl Kulak and Eamonn Guiney, Use Cases: Requirements in Context.
Addison-Wesley, 2000.

Susan Lilly, "How to Avoid Use Case Pitfalls." Software Development
Magazine, January 2000.

Stephen M. McMenamin and John F. Palmer, Essential Systems Analysis.
Yourdon Press, 1994.

Rebecca Wirfs-Brock and Alan McKean, "The Art of Writing Use Cases."
Tutorial for OOPSLA Conference, 2001. See http://www.wirfs-
brock.com/pages/resources.html

Notes

1 "Requirements" define the operational capabilities of a system or process that must exist to
satisfy a legitimate business need. The generic term "requirements" covers both functional
(functionality users expect) and nonfunctional requirements (quality attributes of the
software such as performance, system needs such as security and archiving, and technical
constraints such as language and database). Functional requirements evolve from user
requirements-tasks that users need to achieve with the software.

2 Plangauge is a specification language developed by Tom Gilb. For more information, see:
www.result-planning.com and Tom Gilb, Competitive Engineering: A Handbook for Systems
and Software Engineering Management Using Planguage. Addison-Wesley (forthcoming,
2002).

3 For more about this technique, see "Specifying Requirements with a Wall of Wonder" in the
November issue of The Rational Edge.

4 Alistair Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.

5 Two useful ways to understand use-case dependencies is to show how use cases execute in
sequence with a use-case map (see http://www.ebgconsulting.com/publications.html, "Use
Cases" section for an example) and by clearly defining pre- and post-conditions for each use
case.

6 Stephen M. McMenamin and John F. Palmer, Essential Systems Analysis. Yourdon Press,
1994.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2002 | Privacy/Legal Information

